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Abstract
Reaction–diffusion equations with a fractional Laplacian are reduced near a long wave Hopf
bifurcation. The obtained amplitude equation is shown to be the complex Ginzburg–Landau
equation with a fractional Laplacian. Some of the properties of the normal complex
Ginzburg–Landau equation are generalized for the fractional analogue. In particular, an
analogue of the Kuramoto–Sivashinsky equation is derived.

PACS number: 82.40.Bj

1. Introduction

Random processes characterized by Lévy flights have been
discovered several decades ago. Since then, similar processes
have been observed in numerous natural phenomena:
diffusion and advection in fluids [1], in particular turbulent
flows [2] and wave turbulence [3], motion of animals [4],
balance control in humans [5] and even progress of seismic
foci [6]. At the macroscopic limit, Lévy flights are modeled
by a fractional Laplacian operator. The general properties
of such processes are reviewed in [7]. Often non-linear
kinetics, such as (but not only) chemical reactions create an
intricate interaction with the diffusion process, especially at
an instability threshold [8]–[10]. Thus an equation combining
a fractional diffusion operator (a Laplacian fraction γ /2 with
1 < γ 6 2) and nonlinear kinetics is the simplest model to
capture the basic effects of such an interaction.

Understanding of pattern emergence and formation in
normal reaction–diffusion systems near a Hopf bifurcation
point was achieved by means of amplitude and phase
diffusion equations [11]–[14]. The present work follows
the course of reduction of the fractional reaction–diffusion
model near such a bifurcation in order to obtain and
study the fractional analogues of complex Ginzburg–Landau
(amplitude) and Kuramoto–Sivashinsky (phase diffusion)
equations. The obtained results can be relevant to the problem

of mixing by disordered flows in the presence of chemical
reactions.

2. Reduction near bifurcation point

Consider a two-species fractional reaction–diffusion system

∂n
∂t

=

(
d1 0
0 d2

)(
D

γ1
|x |

n1

D
γ2
|x |

n2

)
+ f(n), (1)

where the Laplacian fractional counterpart is of a generally
distinct order for each species:

D
γ

|x |
n(x, t) = −

sec(πγ /2)

20(2 − γ )

∂2

∂x2

∫
∞

−∞

n(ζ, t) dζ

|x − ζ |γ−1
,

1 < γ < 2, (2)

and n, f and d j are the species concentration vector, kinetics
function and diffusion coefficients, correspondingly. Suppose
there exists a uniform steady state n0 satisfying f(n0) = 0, in
whose close vicinity f varies according to a sensitivity matrix
(∇f) jk = ∂ f j/∂nk , j, k ∈ {1, 2}. Then Hopf bifurcation occurs
when its trace vanishes. Let us split the matrix as

∇f = ∇f0 + ε2

(
0 0
0 µ

)
, tr ∇f0 = 0, ε � 1,

0 < µ ∼ O(1), (3)
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rescale

n(x, t) = N(ξ, t0, t2, . . . ; ε),

ξ = δx, t j = ε j t, j = 0, 2, . . . (4)

and expand

N ∼ n0 +
∞∑
j=1

δ j N j (ξ, t0, t2, . . .), δ j = δ j (ε). (5)

For the leading order reduction only the first slow temporal
and spatial scales will be used. Substitution of (5) into (1) and
scrutiny of the resulting system led to the following choice of
δ and δ j . If γ1 = γ2 = γ , the scales are δ j = ε j and δγ

= ε2,
where the latter ensues by

D
γ

|x |
y(x) = δγD

γ

|ξ |
y(ξ/δ). (6)

Then at order O(δ1) a system of linear homogeneous
equations at the bifurcation point is obtained:

∂N1

∂t0
− ∇f0N1 = 0. (7)

Its solution is

N1 = A(ξ, t2) eλt0 v1 + c.c., λ = iω,

v1 =

(
1
u

)
, u =

iω − ∇ f11

∇ f12
, ω2

= det ∇f0. (8)

At subsequent orders the system is not homogeneous.
At order O(δ3) secular non-homogeneous terms coerce a
solvability condition for A, alias fractional amplitude or
Ginzburg–Landau equation:

∂ A

∂t2
=

µ

2
A +

(
d2 + d1

2
+ i

d2 − d1

2

∇ f11

ω

)
D

γ

|x |
A − s A|A|

2,

(9)
where s is constant and depends on ω and derivatives of f up
to third order at the bifurcation point. To obtain the normal
form, rescale the variables as

t2 7→
2

µ
τ, ξ 7→

(
d2 + d1

µ

)1/γ

x,

A 7→

√
µ

2|<s|
A, α =

d2 − d1

d2 + d1

∇ f11

ω
, β =

=s

<s
,

∂ A

∂τ
= A + (1 + αi)Dγ

|x |
A − sign(<s)(1 + βi)A|A|

2. (10)

If γ1 < γ2, the expansion scales δ j remain the same up to third
order, where the anomalous term first appears: δ j = ε j , j ∈

{1, 2, 3}. The spatial scale choice is according to the activator
exponent δγ 1 = ε2. Then 1 + 2γ2/γ1 > 3 and the anomalous
term of the inhibitor will be neglected at order δ3. Actually, it
will appear only at order k + 1, where k is the greatest integer
satisfying 1 + 2γ2/γ1 > k. The amplitude equation coincides
with (10) upon setting γ = γ1 and d2 = 0. When γ1 > γ2,
the same holds with γ = γ2 and d1 = 0. Thus the fractional

analogue of the complex Ginzburg–Landau equation is

∂ A

∂τ
= A + (1 + αi)Dγ

|x |
A − sign(<s)(1 + βi)A|A|

2,

(11)

γ = min{γ1, γ2}.

This equation was formerly derived in [15] in the problem of
nonlinear oscillators’ dynamics with long range interactions.
In the present paper, the properties of the super-critical version
(Rs > 0) are studied.

3. Symmetry properties

The normal complex Ginzburg–Landau equation possesses
translational space x → x + cx , time τ → τ + ct and phase
A → A exp(ic) symmetry. Moreover, solutions within the
class of modulated waves

A(x, τ ) = B(r) ei(q x−$τ), r = x − vτ, q, $, v ∈ R
(12)

are connected by a similarity transformation within the
family (α − β)/(1 + αβ) = const [11]. With the introduction
of anomaly, equation (11) loses the Galilean invariance,
and the symmetry within the class of modulated waves
is preserved only for v = 0. A solution with given (α, β)

connects to a solution with (α′, β ′) by B = aB ′, r = br ′. Then
q ′

= b q,

a2bγ
=

1 + α′β ′

1 + αβ

1 + α2

1 + α′2
,

$ ′
= α′

− bγ 1 + α′2

1 + α2
(α − $), (13)

b−γ
=

1 + αα′ + (α − α′)$

1 + α2
.

4. Variational formulation

For the special case α = β the normal complex
Ginzburg–Landau equation can be obtained by variation
of a functional [11]. Rotation A 7→ A exp(−iβτ) gives

∂ A

∂τ
= (1 + iβ)(A +Dγ

|x |
A − |A|

2 A). (14)

Then the functional must be adjusted to yield the fractional
Laplacian operator:

ϒ =

∫
∞

−∞

U (x, τ ) dx,

U = − |A|
2 +

1

2
|A|

4
−

sec(πγ /2)

20(2 − γ )

{
∂ A∗

∂x

∂

∂x

∫
∞

−∞

A(ζ ) dζ

|x − ζ |γ−1

+
1

2
(1 − γ )A

∫
∞

−∞

∂ A∗

∂ζ

sign(x − ζ )

|x − ζ |γ
dζ + c.c.

}
+ c. (15)

It is possible to choose the constant c so that ϒ converges, as
the function A is γ -fold differentiable. The first variation is

δϒ = −

∫
∞

−∞

(A − A2 A∗ +Dγ

|x |
A)δA∗ dx + c.c. (16)
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Since
∂ A

∂τ
= −(1 + iβ)

δU

δA∗
, (17)

all solutions of (14) decay asymptotically in time:

∂ϒ

∂τ
=

∫
∞

−∞

∂U

∂τ
dx = −

2

1 + β2

∫
∞

−∞

∣∣∣∣∂ A

∂t

∣∣∣∣2 dx < 0. (18)

5. Stability of traveling waves

Traveling waves Aq(x, τ ) = ρ exp(i(qx − $τ)) are a
sub-class of (12) and comprise an important solution family
of (11). By

D
γ

|x |
eiqx

= −|q|
γ eiqx , (19)

it is straightforward to show that

ρ2
= 1 − |q|

γ , $ = β − (β − α)|q|
γ . (20)

5.1. Spatially homogeneous oscillations

Linearizing equation (11) about A0, i.e.

A = e−iβτ (1 + u + iv), u, v ∈ R, |u|, |v| � 1, (21)

splitting into a real system and neglecting nonlinear terms of
u and v,

∂

∂τ

(
u
v

)
= − 2

(
1 0
β 0

)(
u
v

)
+
(

1 −α

α 1

)
D

γ

|x |

(
u
v

)
. (22)

The eigenvalues λ of a normal disturbance(
u
v

)
=

(
u1

v1

)
eλτ+ikx (23)

satisfy

λ2 + 2λ(1 + |k|
γ ) + |k|

γ
(
(1 + α2)|k|

γ + 2(1 + αβ)
)
= 0. (24)

Since λ1 + λ2 = −2(1 + |k|
γ ) < 0, the disturbance is unstable

if
λ1λ2 = |k|

γ
(
(1 + α2)|k|

γ + 2(1 + αβ)
)
< 0, (25)

which gives a set of unstable wavenumbers when 1 + αβ < 0:

0 < |k| < km, kγ
m = −2

1 + αβ

1 + α2
. (26)

Thus the instability domain in the (α, β) plane coincides with
the normal Benjamin–Feir domain.

5.2. Arbitrary wave

The evolution of a small perturbation a(x, τ ) about an
arbitrary wave solution Aq is governed by

∂a

∂τ
= a + (1 + iα)D

γ

|x |
a − (1 + iβ)(2a|Aq |

2 + a∗ A2
q). (27)

Without loss of generality the base wave may be taken
one-dimensional (1D). However, the disturbance should
combine a longitudinal and transverse waves:

a = Aq+k(τ )ei(q+kx )x+iky y + Aq−k(τ )ei(q−kx )x−iky y . (28)

The resulting system of equations is

d

dτ

(
Aq+k

A∗

q−k

)
= Aq

(
Aq+k

A∗

q−k

)
, (29)

wherein Aq is a 2 × 2 matrix whose entries depend on kx and
ky . With Aq±k = A± exp((λ ∓ i$)τ) the eigenvalues must
satisfy a quadratic equation

det

λ − i$ −A11 −A12

−A∗

12 λ + i$ −A22

= 0. (30)

Below, some particular relations between the longitudinal
and transverse disturbance wavenumbers are considered, and
equation (30) is expanded appropriately at the corresponding
limits.

Note that the underlying wave Aq is neutrally stable: for
kx = ky = 0 the eigenvalues are λ1 = 0, λ2 = −2(1 − |q|

γ ) <

0, thus rendering the long wave disturbances of special
interest. For small ratios kx/q, ky/q , one can distinguish
between two qualitatively distinct cases:

(i) O(kx/q) ∼ O(ky/q) ∼ O(ν),

(ii) O(kx/q) ∼ O(k2
y/q2) ∼ O(ν),

ν � 1. (31)

Firstly, suppose that (31(i)) holds. Then the expansion is
taken up to order O(ν2), because at O(ν) the real part of λ1

vanishes:

<λ1 ∼
γ

2
|q|

γ

(
−(1 + αβ)

(
(γ − 1)

k2
x

q2
+

k2
y

q2

)

+(1 + β2)
γ |q|

γ

1 − |q|γ

k2
x

q2

)
+ O(ν3). (32)

Thus, if 1 + αβ < 0, instability is immediate for any wave
(20). For 1 + αβ > 0, solving to leading order the inequality
Rλ1 > 0 yields(

ky

kx

)2

<
1 + β2

1 + αβ

γ |q|
γ

1 − |q|γ
+ 1 − γ, (33)

wherein coercing positiveness of the right-hand side gives a
subset of unstable wavenumbers

qm < |q| < 1, q−γ
m = 1 +

γ

γ − 1

1 + β2

1 + αβ
. (34)

Then, in the (kx , ky) plane, the instability region is bounded
by two intersecting straight lines. For traveling waves within
this subset, pure longitudinal disturbances (ky = 0) have
the highest growth rate, recovering the Eckhaus instability
criterion for the normal Ginzburg–Landau equation.

Now, suppose (31(ii)) holds. In this case, an expansion to
order O(ν) suffices:

<λ1 ∼ −
γ

2
|q|

γ (1 + αβ)
k2

y

q2
+ O(ν2). (35)

Here the instability ensues only for 1 + αβ < 0.
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6. Phase diffusion equation

At the opposite limit of small ratios q/kx , q/ky , no
new instability criteria emerge. The spatially homogeneous
oscillation A0 is unstable within the same region 1 +
αβ < 0 with respect to disturbances (26). The evolution
of perturbations near the domain boundary is described
by a fractional nonlinear phase diffusion equation (the
fractional analog the Kuramoto–Sivashinsky equation).
Define 0 < ε � 1 so that 1 + αβ = −ε. By (26) the spatial
coordinate scale is χ = ε1/γ x . To find the appropriate
temporal scale take |k|

γ
= K ε and expand (24) in powers of ε.

The resulting approximation is

λ1 ∼ ε2 (K −
1
2 (1 + α2)K 2

)
+ O(ε3). (36)

Hence, the temporal scale is τ2 = ε2τ . Using (6) and rewriting
(11) with χ and τ2,

ε2 ∂ A

∂τ2
= A + ε

(
1 −

i

β
(1 + ε)

)
D

γ

|χ |
A − (1 + iβ)|A|

2 A. (37)

Taking
A = e−iβτ2/ε

2
r(χ, τ2) eiϕ(χ,τ2), (38)

where

r(χ, τ2) = 1 +
∞∑
j=1

ε j r j (χ, τ2), ϕ =

∞∑
j=1

ε j ϕ j (χ, τ2),

(39)
substituting into (37), dividing by exp(iϕ) and using the
expansions

e±iϕ
= 1 ± i

∞∑
j=1

ε j ϕ j −
1

2

∞∑
j=1

ε j ϕ j

2

+ · · · , (40)

it is possible to collect powers of ε. At order O(ε3), the
following equation is obtained:

∂ϕ1

∂τ2
=

1

2

(
β +

1

β

)(
−

1

β

(
D

γ

|χ |

)2
ϕ1 +Dγ

|χ |
ϕ2

1 − 2ϕ1D
γ

|χ |
ϕ1

)
−D

γ

|χ |
ϕ1. (41)

The operator (D|χ |)
2 is defined in Fourier space by(
D

γ

|χ |

)2
eiqχ

= |q|
2γ eiqχ (42)

and cannot be related in a simple way to the operator D2γ

|χ |
,

because the order 2γ exceeds the range of definition of
D

γ

|χ |
. Note that the coefficients of the linear terms Dγ

|χ |
ϕ1

and (D|χ |)
2ϕ1 are consistent with (36). To bring (41) into

parameter independent form, define

τ = τ2 T, x = b χ, ϕ = a ϕ1,

bγ
= T =

2β2

1 + β2
, a = β +

1

β
. (43)

Then
∂ϕ

∂τ
= −D

γ

|x |
ϕ − (D

γ

|x |
)2ϕ +

1

2
D

γ

|x |
ϕ2

− ϕD
γ

|x |
ϕ. (44)

Except for replacing the Laplacian by fractional operators, the
resemblance to the Kuramoto–Sivashinsky nonlinear phase
diffusion equation is obvious.

Figure 1. Amplitude |A| in a phase turbulence regime as described
by FCGL: spatio-temporal diagrams of numerical solutions of
equation (11) for γ = 2.0, β = 1.2 (top), γ = 1.7, β = 1.1 (middle)
and γ = 1.5, β = 1.05 (bottom); α = −1.0.

7. Numerical simulations

The fractional complex Ginzburg–Landau equation (11) and
fractional Kuramoto–Sivashinsky equation (44) have been
solved numerically by a pseudo-spectral method with time
integration in Fourier space, Crank–Nicolson scheme for
linear operators and Adams–Bashforth scheme for nonlinear
ones. Periodic boundary conditions, and if not specified
otherwise, small amplitude random data as an initial condition
have been used. Due to the extremely diverse dynamics of
both CGL and KS equations [11, 16], this section is limited to
the most interesting regimes that show the difference between
the normal and fractional equations.

In one spatial dimension phase and amplitude turbulence,
two regimes of complex behavior known for the normal
CGLE [11] are comparable with the analogous dynamics of
(11). Figure 1 shows phase turbulence regimes for different
values of γ with α and β close to the Benjamin–Feir
instability threshold. As the initial condition, a spatially
homogeneous state ReA = const, ImA = const, |A| = 1 was
used with small amplitude random noise added. The
upper subfigure corresponds to γ = 2.0, i.e. normal CGL
equation with its typical picture of phase turbulence
and small amplitude modulations near |A| = 1, exhibiting
spatio-temporal chaos in the form of splitting and merging
‘cells’ [11]. This type of dynamics is described by the
Kuramoto–Sivashinsky equation (see below). The middle
subfigure shows a phase turbulence regime for γ = 1.7.
In this case, together with merging and splitting cells,
long-living traveling shocks form, propagating in different
directions. These shocks ‘absorb’ the adjacent ‘cells’. The
lower subfigure corresponds to γ = 1.5. Here, a single shock
forms in the whole domain and travels with a constant
speed. The shock tails exhibit weak chaotic modulations. As
shown below, all the above regimes can be captured by a
fractional KS equation, describing phase dynamics near the
Benjamin–Feir instability threshold. With increasing distance
from the threshold, the shocks self-accelerate and trigger a
transition to an amplitude turbulence regime, as shown in
figure 2.
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Figure 2. Amplitude |A| during transition from phase turbulence
to amplitude turbulence triggered by self-accelerating shocks:
spatio-temporal diagrams of numerical solutions of equation (11)
for γ = 1.6, β = 1.3, α = −1.

Figure 3. Amplitude A in amplitude turbulence regime as
described by FCGLE: spatio-temporal diagrams of numerical
solutions of equation (11) for γ = 2.0 (top), γ = 1.5 (middle), and
γ = 1.0 (bottom); α = 1.0, β = −1.3.

Figure 3 shows amplitude turbulence regimes for
different values of γ . The usual amplitude turbulence
dynamics comprising traveling hole solutions with a weak
component of the phase turbulence is observed for γ = 2
(upper subfigure; see also [11]). As γ decreases, the phase
turbulence component grows stronger, and for γ = 1.0 (lower
subfigure) a combined phase-amplitude turbulent regime is
formed with no traveling hole solutions.

Experimental observation of phase and amplitude
turbulence regimes described by a 1D FCGL equation requires
special arrangements in order to make the experimental
system effectively 1D. More generic and easier to study
in experiments are 2D systems, described by a 2D FCGL
equation. Probably the most remarkable solution of a normal
CGL equation in 2D is a spiral wave [11]. Therefore the effect
of anomalous diffusion on spiral wave dynamics is of prime
interest.

Figure 4. Solution snapshots of 2D FCGLE:RA (upper) and |A|

(lower) for α = 1.5, β = −0.6 and γ = 1.9 (a), (d); γ = 1.8 (b), (e);
γ = 1.05 (c), (f).

Numerical simulations of the 2D FCGL equation have
been performed for parameter values, corresponding to the
formation of spiral waves in normal CGLE, by means of a
similar 2D pseudo-spectral code. Figure 4 shows snapshots
of the solutions for different values of γ . Figures 4(a) and
(d) correspond to γ = 1.9. A single spiral wave is formed in
the whole domain, akin to the normal case. In figures 4(b)
and (e) (γ = 1.8) spiral-like defects form, where the core
of each defect occupies a certain domain with domain walls
between them. However, the domain walls in this case are
partially dissolved and the defects (spiral cores) move in a
chaotic manner. With further decrease of γ (figures 4(c)
and (f); γ = 1.05), the number of defects decreases and the
domain walls between them are almost completely dissolved.
The system exhibits several domains with almost spatially
homogeneous oscillations with different phases.

Finally, the fractional Kuramoto–Sivashinsky
equation (44), describing phase dynamics near the
Benjamin–Feir instability threshold, has been solved by
a pseudo-spectral code with periodic boundary conditions
and small amplitude random data as an initial condition.
Figure 5 shows spatiotemporal solution diagrams for different
values of γ . Figure 5(a), corresponding to normal diffusion
(γ = 2.0), shows chaotic spatio-temporal dynamics of
merging and splitting ‘cells’, as in phase turbulence of the
normal CGLE shown in figure 1 (top). Figures 5(b) and (c)
conform to γ = 1.7 and 1.6, respectively. Along with merging
and splitting cells, traveling shocks appear, absorbing and
emitting cells. As γ decreases, the shocks become more
frequent and pronounced, and propagate faster, similarly
to figure 1 (middle). When γ decreases below a certain,
domain length dependent threshold, a single traveling shock
is formed in the whole domain, as exemplified in figure 6: a
spatio-temporal diagram (a) and a few solutions in successive
moments of time (b). The shock travels with a constant
speed, while its tails exhibit weak, chaotic spatio-temporal
modulations. A similar shock formation is seen in figure 1
(bottom).

Note that the shock amplitude grows both with the
decrease of γ and increase of the computational domain.

5
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Figure 5. Spatio-temporal dynamics of FKS equation (44) for
γ = 2.0 (a), γ = 1.7 (b) and γ = 1.6 (c).

Figure 6. Solutions of FKS equation (44) for γ = 1.5:
spatio-temporal diagram (a) and solutions at successive moments of
time (b).

Below some threshold of γ , the shock accelerates with its
amplitude growing exponentially. An asymptotic analysis
revealed large amplitude asymptotic solutions of (44) in the
form

ϕ = a(τ ) f (x − ζ(τ )), (45)

where f is an odd periodic function, a(τ ) grows
exponentially, and the instant speed dζ/dτ is proportional to
a(τ ), as confirmed by numerical simulations.

8. Discussion and conclusions

A reaction–diffusion system governed by Lévy flights has
been reduced near a long wave (Hopf) bifurcation point. The
reduced system is described by a complex Ginzburg–Landau
(FCGL) equation with a fractional order Laplacian.

The fractional analogue does not inherit the
Galilean invariance, a property well known for a
normal Ginzburg–Landau equation, yet the similarity of
modulated wave solutions along the family of curves
(α − β)/(1 + αβ) = constant is retained. Another property
common to normal and anomalous diffusion is the variational
formulation in the special case α = β.

Similarly to a normal complex Ginzburg–Landau
equation, the fractional analogue possesses a family of
solutions in the form of plane traveling waves. For a uniform
oscillation the instability domain in α–β space coincides
with the normal Benjamin–Feir domain. The instability with
respect to 2D disturbances ensues for the whole unit circle
within this domain and for a γ -dependent subset otherwise.

Near the Benjamin–Feir domain boundary the system
dynamics is described by a fractional analogue of the
Kuramoto–Sivashinsky equation (44) for the phase evolution.

Numerical solution of the 1D FCGL equation for
decreasing values of the Lévy exponent γ reveals the
appearance of traveling shock waves in the regime of phase
turbulence, whereas amplitude turbulence exhibits a stronger
phase turbulence component. The decrease of γ in 2D
solutions leads to destruction of spiral waves and formation
of defect chaos.

Solutions of the FKS equation for decreasing γ exhibit a
transformation of chaotic dynamics of merging and splitting
cells, typical of systems with normal diffusion, to traveling
shocks. The same transition is observed for the FCGL
equation. When γ decreases below a certain threshold, the
shocks self-accelerate, their amplitude grows exponentially
and the solution blows up. This phenomenon corresponds to
the transition to amplitude turbulence and has been confirmed
by numerical simulations.

Some remarks on the possible ways to control the
anomalous diffusion effects in experiments are in order. For
a reaction–diffusion system set up in a liquid layer with
turbulent mixing, the means to control the Lévy exponent,
characterizing turbulent diffusion, would be to control the
mixing intensity and possibly the type of turbulent flow. For
a reaction–diffusion system on a catalytic surface, in which
the surface super-diffusion would be a consequence of the
possibility for molecules to make long jumps over the surface
through the gas phase, the Lévy exponent might be controlled
by temperature change or control of the gas flow near the
surface through affecting the adsorption bonds, say, by light
irradiation.
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