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Study of weakly non-linear dynamics of a reaction–super-diffusion system near a Hopf bifurcation by means of fractional
analogues of complex Ginzburg-Landau and Kuramoto-Sivashinsky equations is presented.

Many physical processes of diffusive nature are not amenable to modelling by Fickian diffusion. A widely used description
of super-diffusive transport relies on the continuous time random walk model [1] with a power law asymptotics of the particle
jump length distribution, leading in the macroscopic limit to a diffusion equation with the Laplacian replaced by its fractional
power [2]. Interplay of diffusion with non-linear reaction kinetics results in a quite involved phenomenon of pattern formation
and spatio-temporal chaos. The purpose of the current study was to extend the generic equations describing such a system
near a bifurcation point for the case of anomalous diffusion.

Consider a two-component reaction–diffusion system in the general case of distinct anomaly exponents:

∂nj

∂t
= djD

γj

|x|nj + fj(n1, n2), j = {1, 2}, (1)

where nj , dj and fj are the species concentrations, diffusion coefficients and general kinetic functions, correspondingly. The
fractional operator of order 1 < γ < 2 is defined in physical and Fourier space as [3]
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For a homogeneous steady state n0, i.e. f(n0) = 0, Hopf bifurcation occurs at the long wave limit q = 0 when the trace of
the sensitivity matrix (∇f)jk = ∂fj/∂nk vanishes. At the threshold n = A(ξ, τ)v exp(iω0t), where v, ω0 and A(ξ, τ) are,
correspondingly, an eigenvector, Hopf bifurcation frequency and complex amplitude depending on slow spatial and temporal
scales ξ and τ . A multiple scales analysis yields the fractional complex Ginzburg-Landau (FCGL) equation:

∂A

∂τ
= A + (1 + αi)Dγ

|ξ|A − (1 + βi)A|A|2 (3)

(in rescaled form). This equation was formerly derived in [4] in the problem of nonlinear oscillators’ dynamics with long
range interactions and is similar to a normal complex Ginzburg-Landau equation except that Laplacian is replaced by the
fractional operator, whose order γ equals the smaller of the two species’ exponents. The parameters α and β coincide with
those of a normal reaction–diffusion system if γ1 = γ2, and are obtained by taking d2 = 0 if γ1 < γ2 and d1 = 0 if γ1 > γ2.

Equation (3) preserves the symmetries of a normal complex Ginzburg-Landau equation with respect to time and space
translations and a phase change A �→ A exp(iϑ). Its solutions in the form A(ξ, τ) = B(ξ) ei(qξ−ωτ) have a symmetry akin to
that in [5]. If a solution of this type is known for a pair (α, β), the solution for a new pair (α′, β′) located on one of the curves
(α − β)/(1 + αβ) = const can be found by a similarity transformation B = aB′, ξ = bξ′.

In the special case α = β after the phase shift A �→ A exp(−iβτ), eq.(3), like a normal complex Ginzburg-Landau equation
[6], can be written in a variational form,
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The constant c is chosen so that Υ converges. Then ∂Υ/∂τ = −2(1 + β2)−1
∫ ∞

−∞ |∂A/∂t|
2
dξ < 0, and the system exhibits

relaxational dynamics.
Now consider stability of the traveling wave solutions of (3),

Aq =
√

1 − |q|γei(qξ−ωτ), ω = β − (β − α)|q|γ . (6)
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A small perturbation a(ξ, τ) about Aq comprises longitudinal and transverse waves of the form

a = Aq+k(τ)ei(q+kξ)ξ+ikηη + Aq−k(τ)ei(q−kξ)ξ−ikηη, (7)

with kξ, kη being the respective wave numbers. The solution (6) is neutrally stable with respect to disturbances kξ = kη = 0.
Further insight into long perturbations reveals that for O(kξ/q) ∼ O(kη/q) ∼ o(1) to leading order the growth rate of
Aq±k ∼ exp(λτ) satisfies
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Therefore (6) is unstable if 1+αβ < 0, i.e. Benjamin-Feir criterion for a normal CGLE is recovered. However, if 1+αβ > 0,
a γ-dependent set of unstable wave vectors exists, generalising Eckhaus instability criterion:

|qm| < |q| < 1, |qm|−γ = 1 +
γ

γ − 1

1 + β2

1 + αβ
. (9)

No new instability criteria emerge in the opposite limit q � kξ, kη � 1. In particular, the spatially-homogeneous oscillation
A0 = exp(−iβτ) is unstable in the same region 1 + αβ < 0 with respect to disturbances whose wave numbers k satisfy

0 < |k|γ < −
2(1 + αβ)

(1 + α2)
, 1 + αβ < 0. (10)

The evolution of perturbations near the curve 1+αβ = 0 is expected to be described by an analogue of Kuramoto-Sivashinsky
equation [7]. Reduction of (3) with a slowly evolving amplitude yields an equation for the phase φ:
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The operator (Dγ

|χ|)
2 is defined in Fourier space by (Dγ

|χ|)
2eiqχ = |q|2γeiqχ and cannot be simply related to the operator D

2γ

|χ|

as the order 2γ exceeds the definition range in (2). Eq.(11) is the fractional Kuramoto-Sivashinsky equation (FKS).

(a) �A (upper) and
|A| (lower)

(b) phase φ

Fig. 1 Chaotic regimes: (a) FCGL de-
fect chaos, (b) FKS phase turbulence.

Numerical solutions of (3) and (11) revealed structures similar to those known for
the normal counterparts, whose additional properties are to be studied in the future.
Figure 1(a) depicts a defect chaos regime of a two dimensional variant of (3). Figure
1(b) depicts a spatio-temporal chaotic regime of (11) describing phase turbulence.

In conclusion, it has been shown that weakly non-linear dynamics of a super-
diffusive reaction–diffusion system, characterised by Lévy flights, can be described by
fractional analogues of complex Ginzburg-Landau and Kuramoto-Sivashinsky equa-
tions.
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