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Fractional amplitude and phase dynamics in super-diffusive
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Study of weakly non-linear dynamics of a reaction—super-diffusion system near a Hopf bifurcation by means of fractional
analogues of complex Ginzburg-Landau and Kuramoto-Sivashinsky equations is presented.
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Many physical processes of diffusive nature are not amenable to modelling by Fickian diffusion. A widely used description
of super-diffusive transport relies on the continuous time random walk model [1] with a power law asymptotics of the particle
jump length distribution, leading in the macroscopic limit to a diffusion equation with the Laplacian replaced by its fractional
power [2]. Interplay of diffusion with non-linear reaction kinetics results in a quite involved phenomenon of pattern formation
and spatio-temporal chaos. The purpose of the current study was to extend the generic equations describing such a system
near a bifurcation point for the case of anomalous diffusion.

Consider a two-component reaction—diffusion system in the general case of distinct anomaly exponents:
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where n;, d; and f; are the species concentrations, diffusion coefficients and general kinetic functions, correspondingly. The
fractional operator of order 1 < v < 2 is defined in physical and Fourier space as [3]
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For a homogeneous steady state ny, i.e. f(ng) = 0, Hopf bifurcation occurs at the long wave limit ¢ = 0 when the trace of
the sensitivity matrix (Vf);, = 0f;/0ny vanishes. At the threshold n = A(¢, 7)v exp(iwot), where v, wy and A(§, 7) are,
correspondingly, an eigenvector, Hopf bifurcation frequency and complex amplitude depending on slow spatial and temporal
scales £ and 7. A multiple scales analysis yields the fractional complex Ginzburg-Landau (FCGL) equation:
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(in rescaled form). This equation was formerly derived in [4] in the problem of nonlinear oscillators’ dynamics with long
range interactions and is similar to a normal complex Ginzburg-Landau equation except that Laplacian is replaced by the
fractional operator, whose order «y equals the smaller of the two species’ exponents. The parameters o and (3 coincide with
those of a normal reaction—diffusion system if ; = -2, and are obtained by taking de = 0if 73 < 72 and dy = 0 if 1 > 7».
Equation (3) preserves the symmetries of a normal complex Ginzburg-Landau equation with respect to time and space
translations and a phase change A — A exp(i®9). Its solutions in the form A(£, 7) = B(€) e*(9¢~“7) have a symmetry akin to
that in [5]. If a solution of this type is known for a pair («, /3), the solution for a new pair (o, 5’) located on one of the curves
(o — B)/(1 + af) = const can be found by a similarity transformation B = aB’, £ = b¢’.
In the special case o = (3 after the phase shift A — A exp(—i57), eq.(3), like a normal complex Ginzburg-Landau equation
[6], can be written in a variational form,
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The constant ¢ is chosen so that Y converges. Then Y/ = —2(1+ 32)~" [*°_|9A/dt|> d < 0, and the system exhibits
relaxational dynamics.
Now consider stability of the traveling wave solutions of (3),

Ay = VTZTTE0), = 5= (5 - o)l ©
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A small perturbation a(&, 7) about A, comprises longitudinal and transverse waves of the form
a = Aquk(T)ei(Q-i-kg)&-i-iknn + Aqik(T)ei(q—kg)g—iknnv )

with k¢, k,, being the respective wave numbers. The solution (6) is neutrally stable with respect to disturbances k¢ = k,, = 0.
Further insight into long perturbations reveals that for O(ke/q) ~ O(ky,/q) ~ o(1) to leading order the growth rate of
Agti ~ exp(AT) satisfies
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Therefore (6) is unstable if 1 + a3 < 0, i.e. Benjamin-Feir criterion for a normal CGLE is recovered. However, if 14+« > 0,
a y-dependent set of unstable wave vectors exists, generalising Eckhaus instability criterion:
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No new instability criteria emerge in the opposite limit ¢ < k¢, k,, < 1. In particular, the spatially-homogeneous oscillation

Ay = exp(—i7) is unstable in the same region 1 + a5 < 0 with respect to disturbances whose wave numbers & satisfy
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The evolution of perturbations near the curve 14«3 = 0 is expected to be described by an analogue of Kuramoto-Sivashinsky
equation [7]. Reduction of (3) with a slowly evolving amplitude yields an equation for the phase ¢:
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The operator (QVX‘ )? is defined in Fourier space by (D\le )2e%X = |q|*7e'X and cannot be simply related to the operator 33?; |
as the order 2y exceeds the definition range in (2). Eq.(11) is the fractional Kuramoto-Sivashinsky equation (FKS).
Numerical solutions of (3) and (11) revealed structures similar to those known for
the normal counterparts, whose additional properties are to be studied in the future.
%

Figure 1(a) depicts a defect chaos regime of a two dimensional variant of (3). Figure
1(b) depicts a spatio-temporal chaotic regime of (11) describing phase turbulence.

In conclusion, it has been shown that weakly non-linear dynamics of a super-
diffusive reaction—diffusion system, characterised by Lévy flights, can be described by
fractional analogues of complex Ginzburg-Landau and Kuramoto-Sivashinsky equa-
tions.

References

[1] E.W. Montroll and G.W. Weiss, J. Math. Phys. 6, 167 ( 1965 ). T S e
[2] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000); G.M. Zaslavsky, Hamiltonian chaos il g e ot
and fractional dynamics, 2005, Oxford University Press. (a) RA (upper) and  (b) phase ¢
[3] L.M. Sokolov, A.V. Chechkin and J. Klafter, Physica A: Stat. Theor. Phys. 336, 245 (2004 ). | A| (lower)
[4] V.E. Tarasov and G.M. Zaslavsky, Chaos 16, 023110 ( 2006 ).
[5] P.S. Hagan, SIAM J. Appl. Math. 42, 762 ( 1982). Fig. 1 Chaotic regimes: (a) FCGL de-
[6] LS. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002 ). fect chaos, (b) FKS phase turbulence.
[7] T. Bohr, M.H. Jensen, G. Paladin and A. Vulpiani, Dynamical systems approach to turbu-
lence, 1998, Cambridge Univeristy Press.

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



