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Introduction. – It has been recently realised that
in many random physical processes the conceptions of
Gaussian distribution and Fickian diffusion are invalid.
Many such processes can be described by models of sub-
or super-diffusion, where the displacement moments of the
corresponding random walk grow slower or faster than for
normal diffusion, respectively. A typical example of super-
diffusion is the enhanced transport in fluids, predicted for
flows with velocity correlation functions slowly decaying
in space or time [1]. A specific type of super-diffusion, the
Lévy flight, has been reported in observations of transport
in two-dimensional rotating flows [2] and in a freely decay-
ing two-dimensional turbulent flow [3]. Other examples
of super-diffusive transport include wave turbulence [4],
non-local transport in plasma [5,6], transport in porous
media [7], surfactant diffusion along polymer chains [8],
cosmic-rays propagation [9], motion of animals [10–13]. A
widely used description of super-diffusive transport relies
on the continuous time random walk model with a power
law asymptotics of the particle jump length distribution.
In the case of Lévy flights this leads in the macroscopic
limit to a diffusion equation with the Laplacian replaced
by its fractional power [14–16].
An important problem is the influence of super-diffusion

on processes with chemical reactions [17–20]. Normal
reaction – diffusion systems exhibit different types of
instability [21,22]. Profound understanding of pattern
formation and spatio-temporal chaos in these systems was
achieved through generic equations valid near the instabil-
ity threshold, such as complex Ginzburg-Landau [23–25]
and Kuramoto-Sivashinsky equations [1]. The evolution
of instabilities in reaction – diffusion systems can be
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accompanied by advection of components. For instance
stirring, which changes the effective diffusion properties
of species, is one of the means to control dynamical
regimes in systems with chemical reactions [26,27], includ-
ing those generated by instabilities in reaction – diffusion
systems [28–33]. Thus, one can expect that in some cases
flows can give rise to an enhanced diffusion of reagents [34].
While studies of instabilities in systems with sub-diffusion
have started (see [35] and references therein), super-
diffusive reaction – diffusion systems are still unexplored,
with the exception of the front propagation phenomenon,
which is strongly influenced by fluctuations [17–19]. In this
letter, weakly non-linear dynamics of a reaction – diffusion
system characterised by Lévy flights [36] near a long wave
bifurcation point is investigated.

Fractional Ginzburg-Landau equation. – Consider
a two-component reaction – diffusion system in the general
case of distinct anomaly exponents:

∂nj
∂t
= djD

γj
|x|nj + fj(n1, n2), j = {1, 2}, (1)

where nj , dj and fj are the species concentrations, diffu-
sion coefficients and general kinetic functions, respectively.
The fractional operator of order 1< γ < 2 is defined as [37]

D
γ
|x|n(x) =−

sec(πγ/2)

2Γ(2− γ)

∂2

∂x2

∫ ∞

−∞

n(ζ)

|x− ζ|γ−1
dζ. (2)

The equivalent definition in Fourier space allows for a
simple generalisation of the operator to higher spatial
dimensions:

D
γ
|x|e

iq·x =−|q|γeiq·x, (3)

also making evident the virtue of the rotational invariance
of (2), as opposed to the basic fractional derivative [38].
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This definition serves as a good continuous (macroscopic)
model of a random walk describing Lévy flights, as it
correctly captures the asymptotic behaviour of a particle
probability to perform long jumps. Equation (1) proposes
a suitable description of a reactive system, where the
medium enables enhanced diffusion of Lévy flight type,
while each species’ exponent is determined by its own
mobility properties, for example, a reaction – diffusion
process in a disordered flow with long tail spatial corre-
lation function [1,16] or on a catalyst surface, where long
jumps of the reacting particles are permitted through the
bulk phase with a turbulent gas flow.
Suppose that there exists a homogeneous steady state

n0 satisfying f(n0) = 0. A vanishing trace of the sensitivity
matrix, (∇f)jk = ∂fj/∂nk, j, k ∈ {1, 2}, leads to a Hopf
bifurcation at the long wave limit q= 0. Take ε≪ 1 and
0<μ∼O(1) so that tr∇f |n0 = ǫ

2μ and invoke a multiple
scales analysis with

n(x, t) =N(ξ, t0, t2, . . . ; ǫ), ξ = δ(ǫ)x, (4a)

with tj = ǫ
jt, j = 0, 2, . . . and

N∼ n0+

∞
∑

j=1

δj(ǫ)Nj(ξ, t0, t2, . . .). (4b)

For normal diffusion (γ = 2) δ= ǫ, δj = ǫ
j and a sequence

of problems at successive orders δj is obtained. For an
anomalous system the scaling property of the fractional
operator Dγ|x|y(x) = δ

γ
D
γ
|ξ|y(ξ/δ) determines the scale of

the slow spatial variable δ. Namely, in a more common
case with γ1 = γ2 = γ, the scale is δ= ǫ

2/γ and δj = ǫ
j .

Neglecting the phenomena evolving on time scales longer
than τ = t2, at order O(δ1) a system of linear homogeneous
equations at the bifurcation point is obtained:

∂N1
∂t0
−∇f0N1 = 0, (5)

solved as
N1 =A(ξ, t2)e

iω0t0v1+c.c., (6)

where v1 is an eigenvector of the linearised problem and
ω0 is the Hopf bifurcation frequency. At subsequent orders
the system is not homogeneous. At order O(δ2)

∂N2
∂t0
−∇f0N2 =

∑

k

rke
ikω0t0 , (7)

with k= {−2, 0, 2}, where r2 ∝A
2, r0 ∝ |A|

2 and r−2 = r
∗
2.

The right-hand side contains no secular terms, and thus
(7) is solvable. At O(δ3) the equation

∂N3
∂t0
−∇f0N3 =

3
∑

m=−3

rme
imω0t0 (8)

is solvable conditionally due to the secular terms corre-
sponding to m=±1. The vector r1 in (8) is a sum of

four terms proportional to ∂A/∂τ , μA, Dγ|ξ|A and A|A|
2,

and r−1 = r
∗
1. Hence the amplitude equation, following

from the solvability condition, has the form of a fractional
complex Ginzburg-Landau (FCGL) equation:

∂A

∂τ
=A+(1+αi)Dγ|ξ|A− (1+βi)A|A|

2 (9)

(in rescaled form). This equation was formerly derived
in [39] in the problem of non-linear oscillators’ dynamics
with long range interactions. The parameters α and β
coincide with those of a normal reaction – diffusion
system, but the Laplacian is replaced by the fractional
operator. If γ1 �= γ2, the super-diffusion term with the
larger index is negligible in the long-wave region and
δj = ǫ

j for j � 3 only. Higher-order powers are fractional
and depend on the ratio of the anomalous exponents. Then
the appropriate scaling is δ= ǫ2/γ with γ =min{γ1, γ2},
and the expressions for α and β are obtained by taking
d2 = 0 if γ1 < γ2 and d1 = 0 if γ1 > γ2.

General properties. – The integro-differential equa-
tion (9) retains the basic symmetries of a normal complex
Ginzburg-Landau equation (with respect to time and
space translations and the phase change A �→Aeiϑ). It
is interesting that its solutions in the form

A(ξ, τ) =B(ξ) ei(qξ−ωτ), q, ω ∈R (10)

have a symmetry similar to that found by Hagan [40]. If a
solution of this type is known for a pair (α, β), the solution
for a new pair (α′, β′) located on one of the curves

(α−β)/(1+αβ) = const

can be found by the transformation B = aB′, ξ = bξ′,
where

a2bγ =
1+α′β′

1+αβ

1+α2

1+α′2
, (11a)

bγ =
1+α2

1+αα′+(α−α′)ω
, (11b)

and the new wave number and frequency are q′ = bq,

ω′ = α′− bγ(1+α′
2
)(α−ω)/(1+α2). (11c)

When α= β, by a phase shift A �→Ae−iβτ eq. (9), like
a normal complex Ginzburg-Landau equation [25], can be
written in a variational form,

∂A

∂τ
=−(1+ iβ)

δΥ

δA∗
, (12)

where Υ=
∫∞

−∞
U(ξ, τ)dξ, and

U =
1

2

(

1− |A|2
)2
−
sec(πγ/2)

2Γ(2− γ)

{

∂A∗

∂ξ

∂

∂ξ

∫ ∞

−∞

A(ζ)dζ

|ξ− ζ|γ−1

+
1

2
A

∫ ∞

−∞

∂2A∗

∂ζ2
dζ

|ξ− ζ|γ−1
+ c.c.

}

+const. (13)
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The constant is chosen so that Υ converges. Then

∂Υ

∂τ
=−2(1+β2)−1

∫ ∞

−∞

∣

∣

∣

∣

∂A

∂t

∣

∣

∣

∣

2

dξ < 0, (14)

and the system relaxes to a certain “stationary” solution
(the original variable A oscillates with the frequency β).

Traveling-wave solutions. – Consider the traveling-
wave solutions of (9),

Aq =
√

1− |q|γei(qξ−ωτ), ω= β− (β−α)|q|γ . (15)

A small perturbation a(ξ, τ) about Aq comprises longitu-
dinal and transverse waves of the form

a=Aq+k(τ)e
i(q+kξ)ξ+ikηη +Aq−k(τ)e

i(q−kξ)ξ−ikηη, (16)

with kξ, kη being the respective wave numbers. The solu-
tion (15) is neutrally stable with respect to disturbances
kξ = kη = 0. Further analysis of long perturbations reveals
that for O(kξ/q)∼O(kη/q)∼ o(1) to leading order the
growth rate of Aq±k ∼ e

λτ satisfies

ℜλ ∼
γ

2
|q|γ

[

−(1+αβ)

(

(γ− 1)
k2ξ
q2
+
k2η
q2

)

+ γ(1+β2)
|q|γ

1− |q|γ
k2ξ
q2

]

. (17)

Therefore, all solutions (15) are unstable if 1+αβ < 0,
i.e. the Benjamin-Feir criterion for a normal CGLE is
recovered. However, if 1+αβ > 0, a γ-dependent set of
unstable wave vectors exists, generalising the Eckhaus
instability criterion:

|qm|< |q|< 1, |qm|
−γ = 1+

γ

γ− 1

1+β2

1+αβ
. (18)

No new instability criteria emerge in the opposite
limit q≪ kξ, kη≪ 1. In particular, the spatially homoge-
neous oscillation A0 = exp(−iβτ) is unstable in the same
region 1+αβ < 0 with respect to disturbances whose wave
numbers k satisfy

0< |k|γ <−
2(1+αβ)

(1+α2)
, 1+αβ < 0. (19)

Fractional Kuramoto-Sivashinsky equation. –

The evolution of perturbations near Benjamin-Feir insta-
bility domain boundary is expected to be described by
an analogue of the Kuramoto-Sivashinsky equation [1].
Define 1+αβ =−ǫ, 0< ǫ≪ 1, rewrite (9) with χ= ǫ1/γξ
and τ2 = ǫ

2τ , take

A= exp (−iβτ2/ǫ
2) r(χ, τ2) e

iϕ(χ,τ2), (20a)

where

r= 1+

∞
∑

j=1

ǫj rj(χ, τ2), ϕ=

∞
∑

j=1

ǫj ϕj(χ, τ2), (20b)

Fig. 1: Spatio-temporal dynamics of solutions of eq. (21) for
γ = 2.0 (top), γ = 1.7 (middle), and γ = 1.6 (bottom).

and expand e±iϕ (as the product rule does not apply
here [38]) to obtain the phase diffusion equation at
order O(ǫ3) that, after rescaling, has the following form
(notations for the rescaled space and time variables are
the same):

∂φ

∂τ
=−Dγ|χ|φ− (D

γ
|χ|)

2φ+
1

2
D
γ
|χ|φ

2−φDγ|χ|φ. (21)

The operator (Dγ|χ|)
2 is defined in Fourier space by

(Dγ|χ|)
2eiqχ = |q|2γeiqχ and cannot be simply related to

the operator D2γ|χ| as the order 2γ exceeds the definition

range in (2). Equation (21) is the fractional Kuramoto-
Sivashinsky equation.

Numerical simulations. – Figure 1 shows spatio-
temporal dynamics of the numerical solutions of (21)
obtained by means of a pseudospectral code, using
periodic boundary conditions and starting from small
amplitude random data. The upper figure shows the
dynamics for γ = 2 corresponding to a normal KS equa-
tion: this is a well known spatio-temporal chaos, exhibiting
merging and splitting of “cellular” structures [1]. The
middle figure corresponds to γ = 1.7. One can see that
along with the chaotic dynamics of “cells” large ampli-
tude traveling “shocks” develop which emit cells still
displaying chaotic dynamics. With further decrease of γ
the shocks appear more frequently, propagate faster and
their amplitude grows (see the lower panel corresponding
to γ = 1.6).
When γ decreases below a certain threshold that

depends on the domain length, a single traveling shock
is formed in the whole domain. An example of such
a shock is shown in fig. 2. Here the shock is traveling
with a constant speed (fig. 2a) while its “wings” exhibit
spatio-temporally chaotic modulations (fig. 2b). Decreas-
ing γ results in the increase of the shock amplitude

58003-p3



Y. Nec et al.

0 150
−50

0

50
b)

χ

φ

Fig. 2: Spatio-temporal dynamics of solutions of eq. (21) for
γ = 1.5 (a) and solutions at successive moments of time (b).

and after certain critical γ the shock starts accelerating
with its amplitude growing exponentially. The shock
amplitude grows with the size of the computational
domain. An asymptotic analysis carried out for large
amplitude solutions of (21) shows that the solution
is of the form φ= a(τ)f(ξ− ζ(τ)), where f is an odd
periodic function and a(τ) grows exponentially (despite
the problem non-linearity) with a certain dependence on
the domain size and the velocity dξ(τ)/dτ proportional to
a(τ). The numerical simulations confirm the asymptotic
analysis.
Next, numerical simulations of the FCGL eq. (9) in

1D have been performed for the phase turbulence regime.
Figure 3a shows spatio-temporal dynamics typical of
the normal CGL equation, starting from the Benjamin-
Feir unstable, spatially homogeneous oscillations: it is
well described by the normal KS equation (see fig. 1a).
Figure 3b shows the similar dynamics of eq. (9) for γ = 1.6.
One can see that, after some period of phase turbu-
lence, accelerating shocks form triggering the transition to
defect turbulence shown in fig. 3c. The formation of the
accelerating shocks seen in figs. 3b, c is consistent with
the formation of shocks in the FKS equation discussed
above.
Figure 4 shows the spatio-temporal dynamics of numer-

ical solutions of (9) corresponding to the defect turbu-
lence regime emerging from the Benjamin-Feir unstable
wave (15) with q= 0.5 for γ = 2.0 and γ = 1.1 (figs. 4a
and b, respectively). One can see that in the anomalous
case the defect turbulence has a stronger phase turbulence
component and does not consist of propagating holes.
Finally, numerical simulations of FCGL (9) in 2D have

been performed for the parameter values corresponding to
the formation of spiral waves in the normal CGL equa-
tion. Periodic boundary conditions and small amplitude
random initial data were used. The results are shown in

Fig. 3: Spatio-temporal dynamics of |A| — solution of eq. (9)
for (a) α=−1, β = 1.33, γ = 2.0; (b) α=−1, β = 1.2, γ = 1.6;
(c) continuation of (b) for the same parameter values.

Fig. 4: Spatio-temporal dynamics of |A| — solution of eq. (9)
for α= 1, β =−1.3 and (a) γ = 2.0; (b) γ = 1.1.

fig. 5. One can see that for γ close to 2 (see figs. 5a, d)
the formation of a spiral wave is still observed. With the
decrease of γ the spiral wave regime is replaced by a defect
chaos, however remnants of the spiral waves still can be
seen (figs. 5b, e), with each “spiral” occupying a small
domain with the domain walls partially melted. Further
decrease of γ results in the decrease of the number of
defects, the domain walls are almost completely melted
(figs. 5c, f), and the local wave number created by each
defect decreases. The regimes shown in figs. 5b, e and
figs. 5c, f are similar to the defect chaos typical of the
normal CGL equation [41]. In the normal CGL equation
this regime appears when α is increased. It is found that
the regime in figs. 5b, e returns to the spiral glass state
with the decrease of α. No regimes qualitatively different
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Fig. 5: Snapshots of solutions of eq. (9) for α= 1.5, β =−0.6
and γ = 1.9 (a, d); γ = 1.8 (b, e); γ = 1.05 (c, f); upper panels:
Re(A); lower panels: |A|.

from those observed for the normal CGL equation were
found. Thus, based on the performed computations, one
may conjecture that the anomaly shifts the boundaries of
different regimes on the phase diagram in the parameter
space [41] (corresponding to the normal CGL equation).

Conclusion. – Fractional Ginzburg-Landau and
Kuramoto-Sivashinsky equations have been derived,
describing weakly non-linear dynamics of a super-
diffusive reaction – diffusion system characterised by
Lévy flights, and some of their solutions have been
studied analytically and numerically. Solutions of the
FCGL equation in the form of traveling waves have been
found and their stability studied. It has been shown that
the Benjamin-Feir stability criterion holds also for the
FCGL equation, whereas the Eckhaus stability domain
is different from the normal CGL equation. Changes
in the phase diagram boundaries of different regimes
such as defect chaos, phase turbulence and spiral waves
have been observed due to super-diffusion. It has been
found that with the anomaly exponent diminution the
spatio-temporal chaotic dynamics of cells is replaced by
formation of moving shocks and ultimate blow-up. It is
noted that investigating the effects of fluctuations on
non-linear dynamics of instabilities in a super-diffusive
reaction – diffusion system would be of interest since,
as shown in [19], the fluctuations can have a profound
influence on the non-linear behaviour in such systems.
However, this topic is beyond the scope of the present
paper.
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