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Abstract
A sub-diffusive reaction–diffusion system with a positive definite memory
operator and a nonlinear reaction term is analysed. Amplitude equations
(Ginzburg–Landau type) are derived for short wave (Turing) and long wave
(Hopf) bifurcation points.

PACS number: 82.40.Ck

1. Introduction

The notion of anomalous sub-diffusion generalizes the property of mean square displacement
proportionality to time, typical of Brownian motion, to the power law 〈r2〉 ∼ tγ with an
exponent 0 < γ < 1. Sub-diffusion characterizes systems where various physical factors
impede the free random walk of particles. Basic properties of such systems and their
mathematical modelling can be found in [1, 2].

Since the discovery of anomalous sub-diffusion in many biological systems and especially
living cells, it has become of importance in analysis of realistic diffusive processes. Anomaly
exponents, the measure of diffusion hindrance, have been used to quantify molecular properties
such as cytoplasm crowding [3], particle mobility over lattices [4] and within nuclei [5],
and even to change prevailing concepts regarding molecular motion [6]. The use of
diffusion models accounting for anomaly has proved successful in numerous comparisons
with experimental data [7, 8].

One of the pertinent utilities for the description of anomalous diffusion is the continuous
time random walk model [1, 2]. According to that model, the molecules are trapped so that
the probability of performing a jump depends on the time elapsing since the last jump, i.e.
the age of the molecule. Actually, the molecule is released from its trap due to some changes
in its environment rather than changes in the molecule itself. Introduction of a waiting time
distribution of this type resulted in integro-differential memory operators, known as fractional
derivatives.
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The motion of molecules within a living cell naturally involves chemical reactions:
proteins and lipids within cell or organelle membranes bind to receptors, molecules within a
cytoplasm bind to enzymes, etc. However, a straightforward attempt to generalize a reaction–
diffusion system by the application of a fractional derivative has entailed a not necessarily
positive definite evolution operator, i.e. for a positive given initial condition the system
might develop an unphysical negative molecule density [9]. Thus, more complicated integro-
differential operators are required for proper modelling of reactive systems with anomalous
diffusion.

In [10, 11] a model for a linear monomolecular conversion A � B subject to diffusion
with memory was discussed. Stability analysis of a general linear system of two reagents was
given in [12]. A nonlinear system was posed in [14] based on the approach developed in [13]
and its linear stability was analysed. An important and often tacit assumption of any reaction
model touches on the aging of molecules created due to a reaction event. When a chemical
equilibrium is attained, the underlying reactions occur at the rate dictated by such external
factors as temperature, etc. yet there are no global changes in the species concentration. The
models of [13, 14] assign a zero age to each newborn molecule, thus suppressing diffusion
even under conditions of a chemical equilibrium. A different postulate of age ascription in the
course of reaction—a proportional distribution of age between newly created molecules—is
used in [10–12] with linear kinetics. In the current work the latter approach is adopted for
a model involving a positive definite operator and describing a general nonlinear reaction
kinetics with sub-diffusion.

The sub-diffusive reaction–diffusion systems, akin to the normal ones, are subject to short
wave monotonous (Turing) and long wave oscillatory (Hopf) instability. So far only a linear
stability analysis has been performed. Here a weakly nonlinear theory is set for patterns
developing due to the aforementioned instabilities. For the first time amplitude equations are
derived for both instability types.

2. Mathematical model

A general reaction–diffusion system of n species is considered. It is assumed that a molecule
of species i that arrives to the point r′ at the time instant t ′, performs its next jump to r at
t with the probability density ψi(r − r′, t − t ′) = mi (r − r′)W(t − t ′). The jump length
distribution mi (r − r′) is species dependent, whereas the waiting time distribution W(t − t ′)
depends solely on the age τ = t − t ′ of the molecule performing the jump. It is assumed that
the system possesses a certain spatially homogeneous chemical equilibrium state, described
by a density vector N0(t − t ′) characterizing the equilibrium distribution of molecules age.
The deviations from the equilibrium state are determined by the density vector n(r, t, t ′), the
deviation of molecules distribution arriving to r at the instant t ′ and remaining there till t.
The time evolution of n(r, t, t ′) is affected by two factors: total decrease due to jumps and
chemical composition change due to the reaction. Therefore, it is governed by

∂

∂t
n(r, t, t ′) = (−W(t − t ′)I + M(ρ))n(r, t, t ′), r ∈ �, t > 0, 0 < t ′ < t (1a)

with vectors denoted by a bold font, matrices—by upright type and scalar quantities—by usual
math type. The domain is the whole space or has a rectangular shape � ⊂ R

p, p ∈ {1, 2, 3}.
M is a nonlinear kinetics matrix dependent on the total species density deviation (molecules
of all ages)

ρ(r, t) =
∫ t

0
n(r, t, t ′) dt ′. (1b)
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Figure 1. Linear growth rate curve.

Equation (1a) describes a system, where uniformly distributed ages are ascribed to molecules
produced by a reaction, contrary to the approach taken in [14], where all newborn molecules
are of age zero. An initial condition complementing (1a) is

n(r, t, t) =
∫

�

m(r − r′)
∫ t

0
W(t − t ′)n(r′, t, t ′) dt ′ dr′, (1c)

where m is a diagonal matrix of a jump length distribution, usually dependent on the distance
r−r′ only and defined by its Fourier transform [15] (Fourier transformed quantities are denoted
by a hat and q is the wave vector)

m̂(q) ∼ I − q2σD + o(q2), q = |q|, (2)

with I being an identity matrix, D a diagonal matrix of diffusion coefficients and σ > 0
a second moment of the jump length distribution (as no asymmetry in particle scattering
prevails, the first moment vanishes and σ is the primary characteristic of the jump length
distribution function). For W(t − t ′) a sub-diffusive behaviour is defined in Laplace space (see
appendix A):

L
[
W(τ) e− ∫ τ

0 W(τ ′) dτ ′]
(s) ∼ 1 − �(1 − γ )τ

γ

0 sγ + o(|s|γ ), 0 < γ < 1. (3)

3. Amplitude equations

The linear theory results are reviewed briefly for further clarity of the subsequent nonlinear
derivations. A linear problem similar to (1a) was analysed in [12], and the dispersion relation
derived there was of the form

det(�(1 − γ )τ
γ

0 (Is − M(0))γ + q2σD) = 0 (4)

with M(0) a constant matrix. In a two species systems

D(d) =
(

1 0
0 d

)
, (5)

the growth rate curve s(q; d) corresponding to (4) was bell shaped (figure 1), and a neutral
curve d = du(q) existed with q ∼ O(1), du > 1, corresponding to the instability of the Turing
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type with s > 0. Furthermore, pure imaginary roots were proved to ensue if and only if q = 0
and tr M = 0, corresponding to Hopf instability. As is shown hereinafter, system (1) entails
an identical dispersion relation, and thus bifurcations of these two types are expected.

3.1. Turing instability: Landau equation

Defining η(r, t, τ ) = n(r, t, t ′), τ = t − t ′, (1) becomes(
∂

∂t
+

∂

∂τ

)
η(r, t, τ ) = (−W(τ)I + M(ρ))η(r, t, τ ), r ∈ �, t > 0, 0 < τ < t,

(6a)

ρ(r, t) =
∫ t

0
η(r, t, τ ) dτ , (6b)

η(r, t, 0) =
∫

�

m(r − r′)
∫ t

0
W(τ)η(r′, t, τ ) dτ dr′. (6c)

Consider a two species system and choose a wave number q = qu. Take d in the vicinity of
the neutral curve d = du(qu) + ε2d2, ε � 1, d2 ∼ O(1) and s(qu, du) ∼ O(ε2). Then

m̂ ∼ m̂(0) + ε2m̂(2) + o(ε2), m̂(0) = I − q2σD(du), m̂(2) = −q2σ

(
0 0
0 d2

)
. (7)

Near a Turing instability point the characteristic evolution time t will be a slow scale, while
the aging process scale τ will remain of the order of unity. The bifurcation parameter thereby
defines a slow time scale t2 = ε2t with τ ∼ O(1) and asymptotic expansions

η(r, t, τ ) ∼
∞∑

j=1

εjη(j)(r, t2, τ ), η(j) ∼ O(1) (8a)

ρ(r, t2) ∼
∞∑

j=1

εjρ(j)(r, t2), ρ(j) =
∫ ∞

0
η(j)(r, t2, τ ) dτ , (8b)

where the upper integration limit t2/ε
2 was replaced by infinity, and bearing in mind that

deviations from the equilibrium state are considered,

Mij ∼ Mij |0 +
n∑

k=1

∂Mij

∂ρk

∣∣∣∣
0
ρk +

1

2

n∑
k=1

n∑

=1

∂2Mij

∂ρk∂ρ


∣∣∣∣
0
ρkρ
 + · · · 1 � i, j � n (8c)

with ρk being the kth component of ρ. Substituting expansions (8) into (6a),(
ε2 ∂

∂t2
+

∂

∂τ
+ W(τ)

) ∞∑
j=1

εjη(j) =
∞∑

j=0

εj M(j)

∞∑
j=1

εjη(j), (9)

where by (8b), (8c)

M(0) = M|0, (10a)

M(1)
ij =

n∑
k=1

∂Mij

∂ρk

∣∣∣∣
0
ρ

(1)
k , (10b)

M(2)
ij =

n∑
k=1

∂Mij

∂ρk

∣∣∣∣
0
ρ

(2)
k +

1

2

n∑
k=1

n∑

=1

∂2Mij

∂ρk∂ρ


∣∣∣∣
0
ρ

(1)
k ρ

(1)

 . (10c)
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Expanding also the initial condition (6c),
∞∑

j=1

εjη(j)(r, t2, 0) =
∫

�

(m(0)(r − r′) + ε2m(2)(r − r′) + · · ·)

×
∫ ∞

0
W(τ)

∞∑
j=1

εjη(j)(r′, t2, τ ) dτ dr′. (11)

Extracting the problem of order O(ε) from (9) yields a homogeneous equation

(HI − M(0))η(1) = 0, H def= ∂

∂τ
+ W(τ) (12a)

whose solution is

η(1)(r, t2, τ ) = eH(τ )η(1)(r, t2, 0), H(τ ) = −
∫ τ

0
W(τ ′) dτ ′ + M(0)τ, (12b)

proving the positive definiteness of the homogeneous operator. The corresponding initial
condition is

η(1)(r, t2, 0) =
∫

�

m(0)(r − r′)
∫ ∞

0
W(τ)η(1)(r′, t2, τ ) dτ dr′. (12c)

Substituting (12b) into (12c) and passing back to n(r, t, t ′) with the aid of

n(r, t, t ′) ∼
∞∑

j=1

εj n(j)(r, t2, t ′2), n(j) ∼ O(1) (13)

yields for t2 > 0

n(1)(r, t2, t2) =
∫

�

m(0)(r − r′)
∫ ∞

0
W(t2 − t ′2) eH(t2−t ′2)n(1)(r, t ′2, t

′
2) dt ′2 dr′, (14)

where the infinite upper integration limit is retained, and W(t2 − t ′2) is defined to vanish for any
negative argument. Then assuming that M(0) is diagonalizable, exp(M(0)τ ) = V exp(�τ)V−1

with a constant matrix of the eigenvectors V and diagonal matrix of eigenvalues �, combined
Fourier and Laplace transform of (14) with respect to the third argument of n(1)(r, t2, t2) yields
to leading order in s and q (tilde stands for Laplace transformed quantities)(

I − m̂(0)(q)
(
I − �(1 − γ )τ

γ

0 (Is − M(0))γ
))

ˆ̃n
(1)

(q, t2, s) = 0. (15)

In [12] equation (15) possessed a non-homogeneous right-hand side coming from an additional
initial condition for n(1)(r, 0, 0). Using (7), the dispersion relation to leading order in s is
given by (4). For simplicity the derivation is reduced to one spatial dimension. Thus, for
n = 2 the solution for η(1) is

η(1)(x, t2, 0) = A1(t2) eiquxv + A∗
1(t2) e−iquxv∗, (16a)

where the asterisk stands for complex conjugation, qu is the selected wave number and v is a
constant vector. The density vector ρ(1) is of the same form as η(1), only with another constant
vector

ρ(1)(x, t2) =
∫ ∞

0
η(1)(x, t2, τ ) dτ = A1 eiquxr(1) + A∗

1 e−iquxr(1)∗. (16b)

At order O(ε2) equation (9) yields a non-homogeneous problem

(HI − M(0))η(2) = M(1)η(1) =
∑

α

A2
α eαiquxpα(τ ), p−α = p∗

α, (17a)
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where the right-hand side functional form ensues by combination of entries of the type
exp(±iqux) in M(1) with the same terms from η(1), i.e. α = {2, 0,−2} and respectively
Aα = {A1, |A1|, A∗

1}. Then

η(2)(x, t2, τ ) = eH(τ )

(
η(2)(x, t2, 0) +

∫ τ

0
e−H(τ ′)

∑
α

A2
α eαiquxpα(τ ′) dτ ′

)
, (17b)

η(2)(x, t2, 0) =
∫

�

m(0)(x − x ′)
∫ ∞

0
W(τ)η(2)(x ′, t2, τ ) dτ dx ′. (17c)

Substituting (17b) into (17c), it is seen that the homogeneous part is identical to that of (12c).
The problem linearity implies a particular solution of superimposed terms

η(2)
α = aα(t2) eαiquxqα, qα = const, (18)

upon substitution into (17c) and application of the Fourier transform satisfying

aαqα = m̂(0)(qu)

∫ ∞

0
W(τ) eH(τ )

(
aαqα +

∫ τ

0
e−H(τ )A2

αpα(τ ′) dτ ′
)

dτ. (19)

Note that F[eαiqux] = δ(q − αqu), cancelling throughout. A unique solution for qα exists if
and only if α 
= 1. Without loss of generality aα = {

A2
1, |A1|2, A∗2

1

}
. Therefore,

η(2)(x, t2, 0) = A2(t2) eiquxv + A∗
2(τ ) e−iquxv∗ +

∑
α

A2
α eαiquxqα, (20a)

ρ(2)(x, t2) = A2 eiquxr(2) + A∗
2(τ ) e−iquxr(2)∗ +

∑
α

A2
α eαiquxsα (20b)

with r(2), sα constant vectors. At order O(ε3) equation (9) gives

(HI − M(0))η(3) = − ∂

∂t2
η(1) + M(1)η(2) + M(2)η(1) =

∑
α

eαiquxpα(τ ), p−α = p∗
α

(21a)

with −3 � α � 3 and vectors pα different from those in (17a). Then

η(3)(x, t2, τ ) = eH(τ )

(
η(3)(x, t2, 0) +

∫ τ

0
e−H(τ ′)

∑
α

eαiquxpα(τ ′) dτ ′
)

(21b)

with the initial condition now involving the matrix m(2)

η(3)(x, t2, 0) =
∫

�

m(0)(x − x ′)
∫ ∞

0
W(τ)η(3)(x ′, t2, τ ) dτ dx ′

+
∫

�

m(2)(x − x ′)
∫ ∞

0
W(τ)η(1)(x ′, t2, τ ) dτ dx ′. (21c)

Substitution of (21b) into (21c) and application of the Fourier transform reveal a secular term
due to p1, whose amplitude depends solely on A1

p1 = −∂A1

∂t2
c
(τ ) + A1|A1|2cn
(τ ), (22)

as well as due to the new term in (21c)

s = m̂(0)(qu)

(
−∂A1

∂t2
w0 + A1|A1|2c0

)
+ m̂(2)(qu)(A1w2). (23)

6
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The constant vectors w0, c0, w2 should belong to the subspace spanned by the basis of the
homogeneous part of (21c) {v v∗}. Hence det([v s]) = 0 gives the solvability condition in
the form of a Landau equation

∂

∂t2
A1(t2) = C


(
q2

u

)
A1 − Cn


(
q2

u

)
A1|A1|2. (24)

The signs of all terms were chosen arbitrarily and C
,Cn
 might bear any sign. The value of
C
 is related to s(q; d), the root of (4), as

C
 =
(

∂

∂d
s(q; d)

)
(qu,du)

. (25)

3.2. Turing instability: the Ginzburg–Landau equation

In the previous section the solution spatial periodicity limited the generality in some sense. This
limitation can be abated by an arbitrary modulation of the solution wave. The bifurcation pair
(qc, dc) should correspond to the smallest ratio of diffusion coefficients involving instability,
i.e. the curve s(q; d) (root of (4)) must satisfy

s(qc; dc) =
(

∂

∂q
s(q; d)

)
(qc,dc)

= 0. (26)

Then a slow spatial scale x1 = εx emerges as qc is a unique wave with zero growth rate at
d = dc, and all other waves decay (figure 1). Dependence on x and x1 in physical domain
corresponds to q = qc + εq1 in Fourier space. Inclusion of the slow spatial scale affects the
initial condition only, so the Fourier transform of (11) is replaced by

∞∑
j=1

εj η̂(j)(q1, t2, 0) =
∞∑

j=0

εj m̂(j)

∫ ∞

0
W(τ)

∞∑
j=1

εj η̂(j)(q1, t2, τ ) dτ (27a)

with

m̂(0) = I − q2
c σDc, m̂(1) = −2qcq1σDc,

m̂(2) = −q2
1σDc − q2

c σ

(
0 0
0 d2

)
, Dc =

(
1 0
0 dc

)
.

(27b)

At order O(ε) the solution is

η(1)(x, x1, t2, 0) = A1(x1, t2) eiqcxv + A∗
1(x1, t2) e−iqcxv∗. (28)

At order O(ε2)

η(2)(x, x1, t2, τ ) = eH(τ )

(
η(2)(x, x1, t2, 0) +

∫ τ

0
e−H(τ ′)

∑
α

A2
α eαiqcxpα(τ ′) dτ ′

)
(29a)

with the initial condition

η̂(2)(q1, t2, 0) = m̂(0)

∫ ∞

0
W(τ)η̂(2)(q1, t2, τ ) dτ + m̂(1)

∫ ∞

0
W(τ)η̂(1)(q1, t2, τ ) dτ. (29b)

The last term in (29b) is not truly secular because the critical point corresponds to the extremum
of the growth rate curve (26). For a formal derivation see appendix B. Hence the term m̂(1)η(1)

at order O(ε2) and m̂(1)η(2) at O(ε3) can be ignored. Now condition (29b) will yield a result
identical to (20) with A2 = A2(x1, t2), Aα = Aα(x1, t2).

At order O(ε3) the equation

(HI − M(0))η(3) = − ∂

∂t2
η(1) + M(1)η(2) + M(2)η(1) (30a)

7
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is accompanied by the initial condition

η̂(3)(q1, t2, 0) = m̂(0)

∫ ∞

0
W(τ)η̂(3)(q1, t2, τ ) dτ

+ m̂(1)

∫ ∞

0
W(τ)η̂(2)(q1, t2, τ ) dτ + m̂(2)

∫ ∞

0
W(τ)η̂(1)(q1, t2, τ ) dτ. (30b)

The truly secular terms come from the first harmonic particular solution for η̂(3), identical to
the Landau equation, and from the last term m̂(2)η̂(1)

s = m̂(0)

(
−∂A1

∂t2
w0 + A1|A1|2c0

)
+ m̂(2)(A1w2), (31)

only this time m̂(2) contains terms proportional to q2
c as well as q2

1 . Hence det([v s]) yields
after the inverse Fourier transform the solvability condition in the form of the Ginzburg–Landau
equation

∂A1

∂t2
= C


(
q2

c

)
A1 + C̃


(
q2

c

)∂2A1

∂x2
1

− Cn


(
q2

c

)
A1|A1|2. (32)

The constant C̃
 is related to s(q; d), the root of (4), as

C̃
 = 1

2

(
∂2

∂q2
s(q; d)

)
(qc,dc)

. (33)

Note that the memory mechanism does not influence the dynamics near the threshold, as the
memory scale is O(1), whereas the characteristic time scale is O(ε−2).

3.3. Hopf point: the Ginzburg–Landau equation

As mentioned in the preamble of section 3, a different type of bifurcation results if qc = 0 and
tr M(0) = 0, independently of the memory presence. Then the linear growth rate s(qc; dc) is
pure imaginary rather than zero. Taking the bifurcation parameter 0 < µ ∼ O(1) as

M(ρ)|ρ0
= M(0) + ε2Mb, tr M(0) = 0, Mb =

(
0 0
0 µ

)
, (34)

the time scales of the problem become t0 = t and t2 = ε2t , corresponding to the linear and
modulating waves, and τ for the aging process scale. x1 = εx is the slow spatial scale,
corresponding to q1 in Fourier space. Defining

n(x, t, t ′) = η(x1, t2, t0, τ ) =
∞∑

j=1

εjη(j)(x1, t2, t0, τ ), (35)

equation (9) is replaced by

(
∂

∂t0
+

∂

∂τ
+ W(τ) + ε2 ∂

∂t2

) ∞∑
j=1

εjη(j) =
∞∑

j=0

εj M(j)

h

∞∑
j=1

εjη(j), (36a)

where the expressions for M(j)

h are as in (10a)–(10c) with t0 incorporated as an additional
variable in

ρ(x1, t2, t0) =
∫ ∞

0
η(x1, t2, t0, τ ) dτ, (37)

8
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and M(2)
h = M(2) + Mb. The initial condition is as in (11) with the dependence on t0 included

and bearing in mind the type of bifurcation, m̂(0) = I, m̂(2) = −q2
1σDc. At order O(ε) the

problem is homogeneous

(HI − M(0))η(1) = 0, H def= ∂

∂t0
+

∂

∂τ
+ W(τ) (38a)

Using the transformation of variables θ = t0 − τ, ϑ = τ ,

(Hϑ I − M(0))η(1)(x1, t2, θ, ϑ) = 0, Hϑ
def= ∂

∂ϑ
+ W(ϑ), (38b)

solved as

η(1)(x1, t2, θ, ϑ) = eH(ϑ)η(1)(x1, t2, θ, 0). (38c)

Passing back to (t0, τ ) and substituting into the initial condition,

η̂(1)(q1, t2, t0, 0) = m̂(0)

∫ ∞

0
W(τ)η̂(1)(q1, t2, t0, τ ) dτ. (39)

Changing the integration variable to ζ = t0 − τ and noting that η̂(1)(q1, t2, ζ, 0) vanishes for
any negative value of ζ ,

η̂(1)(q1, t2, t0, 0) = m̂(0)

∫ t0

0
W(t0 − ζ ) eH(t0−ζ )η̂(1)(q1, t2, ζ, 0) dζ. (40)

The Laplace transform with respect to t0 and minor manipulation results in(
I − m̂(0)

(
I − �(1 − γ )τ

γ

0 (Is − M(0))γ
))

ˆ̃η
(1)

(q1, t2, s, 0) = 0. (41)

Since m̂(0) = I, the resulting dispersion relation is det(Is − M(0)) = 0, along with tr M(0) = 0
giving s = ±iω,ω2 = det M(0). Thus

η̂(1)(q1, t2, t0, 0) = A1(q1, t2) eiωt0 v + A∗
1 e−iωt0 v∗, (42a)

η̂(1)(q1, t2, t0, τ ) = eH(τ )(A1 eiω(t0−τ)v + A∗
1 e−iω(t0−τ)v∗), (42b)

ρ̂(1)(q1, t2, t0) =
∫ ∞

0
η̂(1)(q1, t2, t0, τ ) dτ = A1 eiωt0 r(1) + A∗

1 e−iωt0 r(1)∗ (42c)

with v, r(1) constant vectors. Extracting the problem of order O(ε2),

(HI − M(0))η(2) = M(1)η(1) =
∑

α

A2
α eαiωt0 pα(τ ), p−α = p∗

α, (43a)

where the right-hand side functional form ensues by combination of entries of M(1) of
the type exp(±iωt0) with the same terms from η(1), i.e. α = {2, 0,−2} and respectively
Aα = {A1, |A1|, A∗

1}. The solution is

η(2)(x1, t2, θ, ϑ) = eH(ϑ)

(
η(2)(x1, t2, θ, 0) +

∫ ϑ

0
e−H(ϑ ′)

∑
α

A2
α eαiω(θ+ϑ ′)pα(ϑ ′) dϑ ′

)
. (43b)

Returning to the plane (t0, τ ) and substituting (43b) into the initial condition

η̂(2)(q1, t2, t0, 0) = m̂(0)

∫ ∞

0
W(τ)η̂(2)(q1, t2, t0, τ ) dτ, (44)

yields a homogeneous part identical to the previous order and a non-homogeneous part,
solvable by a superposition of

η(2)
α (q1, t2, t0) = aα(q1, t2) eαiωt0 qα, qα = const, aα = A2

α. (45)

9
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Hence

η̂(2)(q1, t2, t0, 0) = A2(q1, t2) eiωt0 v + A∗
2 e−iωt0 v∗ +

∑
α

A2
α eαiωt0 qα (46a)

η̂(2)(q1, t2, t0, τ ) = eH(τ )

(
A2 eiω(t0−τ)v + A∗

2 e−iω(t0−τ)v∗ +
∑

α

A2
α eαiω(t0−τ)qα

+
∫ τ

0
e−H(τ ′)

∑
α

A2
α eαiω(t0−τ+τ ′)pα(τ ′) dτ ′

)
, (46b)

ρ̂(2)(q1, t2, t0) = A2 eiωt0 r(2) + A∗
2 e−iωt0 r(2)∗ +

∑
α

A2
α eαiωt0 sα (46c)

with r(2), sα constant vectors. At order O(ε3)

(HI − M(0))η(3) = − ∂

∂t2
η(1) + M(1)η(2) + (M(2) + Mb)η

(1) =
∑

α

eαiωt0 pα, p−α = p∗
α,

(47a)

with −3 � α � 3, solved as

η(3)(x1, t2, θ, ϑ) = eH(ϑ)

(
η(3)(x1, t2, θ, 0) +

∫ ϑ

0
e−H(ϑ ′)

∑
α

eαiω(θ+ϑ ′)pα(ϑ ′) dϑ ′
)

. (47b)

Returning to the plane (t0, τ ) and substituting (47b) into the initial condition

η̂(3)(q1, t2, t0, 0) = m̂(0)

∫ ∞

0
W(τ)η̂(3)(q1, t2, t0, τ ) dτ + m̂(2)

∫ ∞

0
W(τ)η̂(1)(q1, t2, t0, τ ) dτ,

(47c)

reveals a secular term due to

p1 = −∂A1

∂t2
c
2(τ ) + A1c
1(τ ) + A1|A1|2cn
(τ ) (48)

and the new term in (47c)

s = −∂A1

∂t2
w0 + A1w1 + A|A1|2c0 + m̂(2)(A1w2). (49)

As m̂(2) is proportional to q2
1 , det([v s]) yields, similarly to the monotonous critical point, a

solvability condition in the form of the Ginzburg–Landau equation

∂A1

∂t2
= C
A1 + C̃


∂2A1

∂x2
1

− Cn
A1|A1|2. (50)

4. Conclusion

A multiple scales analysis was used to derive amplitude equations for a reaction–sub-diffusion
system with general nonlinear kinetics and uniform age distribution between molecules
created in the reaction process. The sub-diffusion property was introduced via a positive
definite memory operator, ensuing from a basic molecular decay law in the absence of
chemical reactions. This approach encompasses a wide variety of systems with an equilibrium
characterized by ongoing reactions, yet globally constant species concentrations.

Two types of bifurcation points were considered: a point with short wave monotonous
(Turing) and a long wave oscillatory (Hopf) instability. For a Turing point two amplitude

10
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equations were derived: one of Landau type for any unstable short wave and one of Ginzburg–
Landau type for a unique wave number, corresponding to the smallest ratio of diffusion
coefficients entailing instability. For a Hopf point an equation of Ginzburg–Landau type
was derived. The presence of anomaly neither entailed qualitative changes in the equation
form nor introduced any memory effects into the system dynamics near the threshold due to a
temporal scale separation between the O(1) memory effect and O(ε−2) perturbation evolution.
Quantitative changes in both linear and nonlinear equation coefficients are expected.

An intriguing phenomenon reported recently is an increase of noise during measurements
at a threshold and consequently a broader parameter estimation uncertainty: near the
percolation limit [7] and due to a hierarchy of binding sites within a nucleus [8]. Such
results imply an approach of an instability threshold, rendering the weakly nonlinear analysis
of special interest. With future advance in experimental visualization techniques the amplitude
equations may be applied to explain and predict pattern formation in reaction–sub-diffusion
systems. The normal form of the equations implies that the sub-diffusion by itself does not
change the universal behaviour of the system near a bifurcation point.

A system where the memory and slow characteristic time scales are of the same order of
magnitude remains a topic for future research. There the presence of memory should affect
the form of the amplitude equations.
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Appendix A. Functional form of time waiting distribution

In order to determine correctly the functional dependence of the waiting time distribution
W(t − t ′), equation (1a) in the absence of reaction

∂

∂t
n(x, t, t ′) = −W(t − t ′)n(x, t, t ′), (A.1a)

will be compared with the more common postulate of decay

∂

∂t
n(x, t, t ′) = −w(t − t ′)n(x, t ′, t ′). (A.1b)

Equivalence of the two equations yields

w(t − t ′) = W(t − t ′) e− ∫ t

t ′ W(y−t ′) dy (A.2a)

and

w(t − t ′) = W(t − t ′)
(

1 −
∫ t

t ′
w(y − t ′) dy

)
. (A.2b)

Defining τ = t − t ′,

w(τ)/W(τ) = 1 −
∫ τ

0
w(y) dy. (A.3)

The Laplace transform gives

L[w/W ](s) = (1 − w̃)/s. (A.4)

The decay of w in the case of sub-diffusion is known

w̃ ∼ 1 − �(1 − γ )τ
γ

0 sγ + o(|s|γ ), (A.5)

11
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where � denotes the gamma function and τ0 is a characteristic decay time (see also [15]).
Hence

L[w/W ](s) ∼ �(1 − γ )τ
γ

0 sγ−1 + o(|s|γ−1). (A.6)

By the identity ∫ ∞

0
e−sτ τ α−1 dτ = s−α�(α), α > 0 (A.7)

with α = 1 − γ

W(τ) ∼ w(τ)

(
τ

τ0

)γ

, τ � 1. (A.8)

Substituting into (A.3), cancelling w(τ) (that never vanishes) and differentiating gives the
decay law of both functions

w(τ) ∼ γ τ
γ

0

τ γ +1
, W(τ) ∼ γ

τ
, τ � 1. (A.9)

Appendix B. Ostensible secularity in the Ginzburg–Landau equation

In order to show formally that certain terms of secular nature, appearing in the course of the
derivation of the Ginzburg–Landau equation in the vicinity of a Turing bifurcation point, are
in fact superfluous, an intermediate time scale t1 = εt is introduced in addition to the usual
slow scale t2 = ε2t . The governing equation (9) then becomes(

ε
∂

∂t1
+ ε2 ∂

∂t2
+

∂

∂τ
+ W(τ)

) ∞∑
j=1

εjη(j) =
∞∑

j=0

εj M(j)

∞∑
j=1

εjη(j),

η(j) = η(j)(x, x1, t1, t2, τ ), (B.1a)

complemented by the initial condition
∞∑

j=1

εj η̂(j)(q1, t1, t2, 0) =
∞∑

j=0

εj m̂(j)

∫ ∞

0
W(τ)

∞∑
j=1

εj η̂(j)(q1, t1, t2, τ ) dτ. (B.1b)

At order O(ε) a homogeneous equation ensues

(HI − M(0))η(1) = 0, (B.2a)

η̂(1)(q1, t1, t2, 0) = m̂(0)

∫ ∞

0
W(τ)η̂(1)(q1, t1, t2, τ ) dτ, (B.2b)

entailing results analogous to (12) and (16), i.e.

η(1)(x, x1, t1, t2, τ ) = eH(τ )η(1)(x, x1, t1, t2, 0), (B.3a)

η(1)(x, x1, t1, t2, 0) = A1(x1, t1, t2) eiqcxv + A1 ∗ (x1, t1, t2) e−iqcxv∗. (B.3b)

At order O(ε2) a non-homogeneous equation is obtained

(HI − M(0))η(1) = −∂A1

∂t1
eiqcx eH(τ )v − ∂A∗

1

∂t1
e−iqcx eH(τ )v∗ +

∑
α

A2
α eαiqcxpα(τ ), (B.4a)

12
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η̂(2)(q1, t1, t2, 0) = m̂(0)

∫ ∞

0
W(τ)η̂(2)(q1, t1, t2, τ ) dτ + m̂(1)

∫ ∞

0
W(τ)η̂(1)(q1, t1, t2, τ ) dτ,

(B.4b)

with pα and Aα identical to (17a). The solution of (B.4a) is given by

η(2)(x, x1, t1, t2, τ ) = eH(τ )

{
η(2)(x, x1, t1, t2, 0) +

∫ τ

0
e−H(τ ′)

(∑
α

A2
αeαiqcxpα(τ ′)

− ∂A1

∂t1
eiqcx eH(τ ′)v − ∂A∗

1

∂t1
e−iqcx eH(τ ′)v∗

)
dτ ′

}
, (B.5)

therefore the secular term in (B.4b) is

s = −m̂(0) ∂A1

∂t1

∫ ∞

0
τW(τ)v dτ + m̂(1)A1

∫ ∞

0
W(τ) eH(τ )v dτ. (B.6)

As m(1) is proportional to q1, the solvability condition det ([v s]) = 0 leads to

∂A1

∂t1
= C


(
q2

c

)
q1A1 (B.7)

or after inverse Fourier transform
∂A1

∂t1
= C


(
q2

c

)∂A1

∂x1
. (B.8)

The coefficient C
 is related to s(q; d), the root of (4), as

C
 ∝
(

∂

∂q
Re s(q; d)

)
(qc,dc)

= 0. (B.9)

Thus all terms containing the matrix m(1) in the derivation without the scale t1 (section 3.2)
entail no true secularity, but imply that A1 does not depend on t1.
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