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Abstract

Two- and three-dimensional exact solutions of the non-linear diffusion equation are proved to exist in

elliptic coordinates subject to an arbitrary piecewise constant azimuthal anisotropy. Degrees of freedom

traditionally used to satisfy boundary conditions are instead employed to ensure continuity and conser-

vation of mass across contiguity surfaces between subdomains of distinct diffusivities. Not all degrees of

freedom are exhausted thereby and conditions are given for the inclusion of higher harmonics. Degrees

of freedom associated with one isotropic subdomain are always available to satisfy boundary conditions.

The second harmonic is pivotal in the solution construction as well as identification of partial symmetries

in the domain partition. The anisotropy gives rise to an unconventional mixed type critical point that

combines saddle and node-like characteristics.
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1 Background

The steady non-linear diffusion equation

∇ ¨
´

´ Kuγ´1
∇u

¯

“ C (1.1)

emerges in numerous contexts in physics and engineering. The unknown function u denotes the diffusing
entity, K is the diffusivity, and C – the source or sink. The non-linearity parameter γ ‰ 0 is constant.
Whilst isotropic and axially symmetric solutions are elementary [1], the complexity of many natural or
man-made media requires a more realistic description. The studies seeking to break the symmetry via a
generalisation to elliptic domains – be it of solid or virtual boundaries – are rare, and despite a series of
preluding simplifications, eventuate in the usage of finite element methods [2, 3, 4]. Modelling anisotropic
transport is of interest in large scale applications, such as diffusion in construction materials [5] and subsurface
flows near oil reservoirs [6, 7] or aquifers [8]. As the permeability of these media cannot be controlled at
will, analytical solutions supporting a flexible spatial anisotropy dependence are of value, doubly so if the
constraint due to the idealised circular cross-section geometry can be relaxed.

The isotropic homogeneous version of (1.1) is equivalent to the Laplace’s equation for uγ and thus
separable in 13 coordinate systems [9]. The separability of Laplace’s equation had been studied by many
famous mathematicians, resulting in the definition of several families of special functions. A recent discovery
of an expansive class of solutions with arbitrary piecewise constant azimuthal anisotropy in polar [10, 11]
and spherical [12] coordinates prompts the question of existence in other coordinate systems. The intricacy
of connection between the separability of Laplace’s equation and existence of anisotropic solutions is a
crucial point that escaped classical works. This study is a step in an effort to delineate the conditions
under which the anisotropic solutions persist in curvilinear orthogonal coordinate systems. The mainstay
feature underpinning these solutions is that one coordinate traces closed orbits in the Cartesian space. In
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polar and spherical coordinates these are circles, conducing a further question whether existence hinges on
axial symmetry. The aim of the current contribution is to answer this fundamental question in the negative
by constructing anisotropic solutions in the elliptic coordinate system. This system, whilst possessing the
requisite periodic orbits, lacks the axial symmetry inherent to polar and spherical framework.
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Figure 1: Anisotropic configuration tθiu with distinct diffusivities tKiu, i “ t1, . . . , Nu, in the elliptic
coordinate system.

In a generic system of curvilinear orthogonal coordinates pξ1, ξ2, ξ3q the i-th component of the gradient
of a scalar function u is

p∇uqi “
1

hi

Bu

Bξi
(1.2a)

and the divergence of a vector function f “ pf1, f2, f3q is

∇ ¨ f “
1

h1h2h3

#

B

Bξ1

`

h2h3f1
˘

`
B

Bξ2

`

h1h3f2
˘

`
B

Bξ3

`

h1h2f3
˘

+

, (1.2b)

where the scale factors hi, i “ t1, 2, 3u, are defined by the following relation between the Cartesian system
px, y, zq and the new system:

h2

i “

˜

Bx

Bξi

¸2

`

˜

By

Bξi

¸2

`

˜

Bz

Bξi

¸2

. (1.2c)

The elliptic cylinder system pξ, θ, ζq is defined by

x “ f cosh ξ cos θ, y “ f sinh ξ sin θ, z “ ζ, (1.3a)

where ξ ą 0 measures distance along confocal hyperbolae with foci on the x-axis at p˘f, 0, 0q, and 0 ď θ ă 2π
is an elliptic arc length (see figure 1). Definition (1.2c) permits to define h :“ h1 “ h2 and yields

h2 “
1

2
f2

´

coshp2ξq ´ cosp2θq
¯

, h3 “ 1, (1.3b)
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wherewith equation (1.1) becomes

B

Bξ

˜

K
Buγ

Bξ

¸

`
B

Bθ

˜

K
Buγ

Bθ

¸

`
B

Bζ

˜

Kh2
Buγ

Bζ

¸

“ ´γCh2. (1.4)

Consider an elliptic annulus ξin ď ξ ď ξex divided into an arbitrary number of subdomains by angles tθiu
N
i“1

such that Ki ‰ Ki`1 for any 1 ď i ď N . The index i` 1 is wrapped back to 1 for i “ N , since the N -th and
first subdomains are contiguous. By the conceptual similarity to the polar geometry, the subdomains might
be referred to as sectors. The source C is taken constant throughout: it is shown hereunder that a problem
with a piecewise constant C is equivalent to one with a uniform C and redefined set tKiu

N
i“1

.
The function u must be continuous throughout the domain, i.e.

u
ˇ

ˇ

ˇ

θ
´

i

“ u
ˇ

ˇ

ˇ

θ
`

i

, 1 ď i ď N. (1.5a)

Since K is not constant, the condition of conservation of angular flux across the contiguity surfaces θ “ θi
is obtained by integrating (1.4) along an infinitesimal arc pθi ´ ε, θi ` εq and taking the limit ε ÝÑ 0:

˜

K
Bu

Bθ

¸

θ
´

i

“

˜

K
Bu

Bθ

¸

θ
`

i

, 1 ď i ď N. (1.5b)

Conditions (1.5) are instrumental in constructing a valid anisotropic solution, and are formally identical to
the polar and spherical settings, only the meaning encoded by the coordinate θ here is new.

2 Anisotropic solution existence

(a) Two-dimensional flow

Within each isotropic sector the diffusivity K is constant and thus can be factored out of the divergence
operator in (1.4). Begin with a two-dimensional version of (1.4) by setting Bζ ” 0 and seeking a separated
solution

u
γ
i pξ, θq “ ´

γf2

8Ki

C
´

coshp2ξq ` cosp2θq
¯

` ApξqBpθq. (2.1)

The functions A and B satisfy the ordinary differential equations

A11 ´ α2A “ 0 and B11 ` α2B “ 0, (2.2)

where α is the separation constant. Since the scale factor h is periodic in θ, demanding periodicity for u

will also ensure periodicity for the flux that is proportional to ∇u. Thus enforcing Bpθq “ Bpθ ` 2πq yields
α “ m, m P Z. When α “ 0, the eigenfunctions are given by Bo ” 1 and Ao “ ao ` boξ. All other values

of m result in Bm P span
!

sinpmθq, cospmθq
)

together with Am P span
!

exppmξq, expp´mξq
)

. This basis

for the function Am allows for an elegant separation of components that decay or blow up as ξ ÝÑ 8. The
isotropic solution within sector i is then written as

u
γ
i “

γf2

8Ki

#

´ C coshp2ξq ´ C cosp2θq ` apiq
o ` bpiq

o ξ` (2.3)

8
ÿ

m“1

˜

emξ
´

apiq
m sinpmθq ` bpiq

m cospmθq
¯

` e´mξ
´

αpiq
m sinpmθq ` βpiq

m cospmθq
¯

¸+

,

3



where a
piq
m , b

piq
m , α

piq
m and β

piq
m are constants to be determined. Form (2.3) allows to set C “ 0 without affecting

the analysis hereinafter and shows that possibly distinct values of C in different sectors might be redefined

to equal a single uniform value by utilising the ratios C
M

Ki.

Theorem 2.1 Let ki be the ratios of diffusivities in adjacent sectors: ki “ Ki

M

Ki`1 @1 ď i ď N ´ 1 and

kN “ KN

M

K1. Furthermore, if C ‰ 0, suppose the configuration as defined by tθiu
N
i“1

and tkiu
N
i“1

satisfies

the compatibility condition

k1 ¨ . . . ¨ kN´1p1 ´ kN q cosp2θN q ` . . . ` k1p1 ´ k2q cosp2θ2q ` p1 ´ k1q cosp2θ1q “ 0. (2.4)

Then the anisotropic, 2π-periodic solution to (1.4) in the domain
!

pξ, θq
ˇ

ˇ

ˇ
ξin ď ξ ď ξex, 0 ď θ ă 2π

)

exists

if and only if the following (almost) block bidiagonal linear system possesses a non-trivial solution for m “ 2:

C
pmqcm “ r, (2.5a)

where the vector cm stands for
´

a
p1q
m , b

p1q
m , ¨ ¨ ¨ , a

pNq
m , b

pNq
m

¯T

and
´

α
p1q
m , β

p1q
m , ¨ ¨ ¨ , α

pNq
m , β

pNq
m

¯T

, the

matrix C
pmq is defined as

C
pmq “

¨

˚

˚

˚

˚

˚

˚

˝

A
pmq
1

B
pmq
1

A
pmq
2

B
pmq
2

. . .
. . .

A
pmq
N´1

B
pmq
N´1

B
pmq
N A

pmq
N

˛

‹

‹

‹

‹

‹

‹

‚

, (2.5b)

with the block matrices given by

A
pmq
i “

ˆ

sinpmθiq cospmθiq
cospmθiq ´ sinpmθiq

˙

, B
pmq
i “

ˆ

´ki sinpmθiq ´ki cospmθiq
´ cospmθiq sinpmθiq

˙

. (2.5c)

System (2.5a) is homogeneous if m ‰ 2, whereas for m “ 2 the right-hand side vector r equals

r “
C

2

´

1 ´ k1, 0, ¨ ¨ ¨ , 1 ´ kN , 0
¯T

. (2.5d)

Proof Implementing the continuity conditions (1.5) for a pair of adjacent sectors i and i ` 1 separated by
the contiguity curve θi for m “ 1 or any m ą 2 gives

´

A
pmq
i B

pmq
i

¯

¨

˚

˚

˚

˝

a
piq
m

b
piq
m

a
pi`1q
m

b
pi`1q
m

˛

‹

‹

‹

‚

“

ˆ

0
0

˙

. (2.6a)

For m “ 2 the left-hand side is identical, but the right-hand side is inhomogeneous if C ‰ 0:

´

A
p2q
i B

p2q
i

¯

¨

˚

˚

˚

˝

a
piq
2

b
piq
2

a
pi`1q
2

b
pi`1q
2

˛

‹

‹

‹

‚

“
C

2

ˆ

1 ´ ki
0

˙

. (2.6b)
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For the coefficients α
piq
m and β

piq
m identical equations ensue. Collecting the systems for all θi gives (2.5).

Because (2.5) is inhomogeneous for m “ 2, unless a non-trivial solution cm exists, there will be no solution
to (1.4). In other words, either detCp2q ‰ 0, or if detCp2q “ 0, the right-hand side vector rmust be orthogonal

to the null space of CpmqT. If detCpmq ‰ 0 for m “ 1 or any m ą 2, the respective coefficients cm vanish,
however that does not thwart the existence of a solution to (1.4). If detCpmq “ 0, a non-trivial cm will

introduce harmonics of frequency m into (2.3). In light of the above, m “ 2 gives a
piq
2

“ α
piq
2

and b
piq
2

“ β
piq
2

for all i. For all other m if detCpmq “ 0, no such pairwise equality needs to be enforced.

The harmonic m “ 0 requires a separate treatment. Implementing (1.5a) for the coefficients b
piq
o in

adjacent sectors gives b
piq
o “ kib

pi`1q
o . This is a linear homogeneous system in N unknowns b

piq
o . Writing this

relation for all 1 ď i ď N leads to

bp1q
o “

N´1
ź

j“1

kj bpNq
o “

N
ź

j“1

kj bp1q
o . (2.7)

Since
N
ś

j“1

kj “ 1 is an identity, the linear system is soluble with a single degree of freedom:

b
piq
o “ b

p1q
o

M i´1
ś

j“1

kj . An identical argument for the coefficients a
piq
o creates an inhomogeneous system: a

piq
o “

kia
pi`1q
o ´ Cpki ´ 1q cosp2θiq that is only soluble if C “ 0 or if (2.4) holds. �

Remark 2.1 System (2.5) and concomitant solvability conditions have appeared in the analysis of anisotropic
diffusion in polar and spherical coordinates [11, 12], but without the compatibility condition (2.4). The ellip-
tic coordinate system is the first, where this condition emerges. The conjecture on its degeneracy in axially
symmetric geometries is a topic of future studies.

An example of the complexity of topological terrain supported by (2.3) is given in figure 2. The degrees

of freedom a
piq
o , b

piq
o might be determined via boundary conditions for the transversal (ξ-direction) flow in

one sector. If, for instance, the desired range of ξ is ξin ď ξ ď ξex, define the transversal part as

u
piq
t “

#

γf2

8Ki

´

´ C coshp2ξq ` apiq
o ` bpiq

o ξ
¯

+1{γ

. (2.8)

Then for a given generation rate C and permeability Ki in one chosen sector i it is possible to set a
piq
o , b

piq
o

to satisfy given values u
piq
t pξinq “ u

piq
in

and u
piq
t pξexq “ u

piq
ex . These values ultimately bear on the ability to

construct a real solution when u represents a positive physical quantity and γ is even. Sufficiently large free
coefficients in the transversal part allow for a real solution with larger oscillatory components in (2.3). For

high harmonics the magnitude of the coefficients α
piq
m and β

piq
m might need to exceed significantly that of a

piq
m

and b
piq
m for their contribution to be tangible due to the decaying exponential factor expp´mξq. In general,

all coefficients in a single sector might be determined by expanding a desired boundary condition in the
function basis set by (2.3). The coefficients in the other sectors follow by the continuity conditions (1.5).

Note the peculiar shape of contours in the vicinity of the fixed point marked by a diamond on the
contiguity curve corresponding to θ1: their appearance does not resemble any of the local contour shape
characteristic of conventional critical points. This point is positioned on a boundary between two subdomains
of distinct diffusivities. When this happens, condition (1.5b) is satisfied because the tangential derivative
uθ vanishes, i.e. at this point uθ is continuous across the contiguity curve. The contours on the two sides
depend on the topological terrain in each sector, and might well correspond to critical points of different
types, creating a mixed type fixed point. This occurrence is further discussed in §4.
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a
p1q
o “ 18.549, a

p2q
o “ 129.84

b
p1q
o “ 5.2135, b

p2q
o “ 36.494

a
p1q
2 “ α

p1q
2 “ 0.42, a

p2q
2 “ α

p2q
2 “ ´0.06

b
p1q
12 “ 1e ´ 05, b

p2q
12 “ 7e ´ 05

α
p1q
12 “ α

p2q
12 “ 0.55335

β
p1q
12 “ 5, β

p2q
12 “ 35

Figure 2: Isocontour map of (2.3) with m “ 2 and m “ 12: K1 “ 1, K2 “ 7, θ1 “ π{4, θ2 “ 5π{4

(green / grey curves), C “ 0.2, γ “ 2, f “ 1, ξin “ 0.1, ξex “ 1, u
p1q
in

“ 0.95, u
p1q
ex “ 1; coefficient values

as stated (given to 5 significant figures); contour level linearly distributed (density corresponds to gradient);
diamond on θ1 curve marks a mixed type fixed point.

(b) Tridimensional flow

Seeking a separated solution

u
γ
i pξ, θ, ζq “ ´

γf2

8Ki

C
´

coshp2ξq ` cosp2θq
¯

` ApξqBpθqZpζq (2.9)

within each isotropic sector gives the ordinary differential equations

A11 `
´

´ a ` 2q coshp2ξq
¯

A “ 0, 2q :“
1

2
λf2 (2.10a)

B11 `
´

a ´ 2q cosp2θq
¯

B “ 0, (2.10b)

Z 11 ´ λZ “ 0, (2.10c)

where λ and a are separation constants. The solutions to (2.10a) and (2.10b) depend on the sign of λ and
thus on the boundary conditions imposed for Z. The simpler possibility is that (2.10c) holds on a half line,
so that λ ě 0. Suppose first λ ą 0. Then q ą 0 and an infinite sequence of eigenvalues a in (2.10b) generates
periodic solutions via the Mathieu functions of the first kind, also known as sine-elliptic and cosine-elliptic
functions [13, 8.62]:

ce2mpθ; qq “
8
ÿ

r“0

A
p2mq
2r cosp2rθq, ce2m`1pθ; qq “

8
ÿ

r“0

A
p2m`1q
2r`1

cospp2r ` 1qθq, (2.11a)
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se2m`1pθ; qq “
8
ÿ

r“0

B
p2m`1q
2r`1

sinpp2r ` 1qθq, se2m`2pθ; qq “
8
ÿ

r“0

B
p2m`2q
2r`2

sinpp2r ` 2qθq.

The series coefficients A
pmq
r and B

pmq
r are computed separately for even and odd m. The corresponding

solutions to (2.10a) are the associated Mathieu functions of the first kind [13, 8.63]:

Ce2mpξ; qq “
8
ÿ

r“0

A
p2mq
2r coshp2rξq, Ce2m`1pξ; qq “

8
ÿ

r“0

A
p2m`1q
2r`1

coshpp2r ` 1qξq, (2.11b)

Se2m`1pξ; qq “
8
ÿ

r“0

B
p2m`1q
2r`1

sinhpp2r ` 1qξq, Se2m`2pξ; qq “
8
ÿ

r“0

B
p2m`2q
2r`2

sinhpp2r ` 2qξq.

The case λ “ 0 gives Zpζq “ ão ` b̃oζ. The only bounded solution is then Zo ” 1, and the functions A and
B coincide with the two-dimensional solution. Combining all of the above yields

u
γ
i

ˇ

ˇ

ˇ

ˇ

ˇ

3D

“ u
γ
i

ˇ

ˇ

ˇ

ˇ

ˇ

2D

`
γf2

8Ki

8
ÿ

n“1

8
ÿ

m“1

Znpζq

#

´

a
piq
nm sempθq ` b

piq
nm cempθq

¯

Cempξq` (2.12)

´

α
piq
nm sempθq ` β

piq
nm cempθq

¯

Sempξq

+

,

where Zn is the sequence of eigenfunctions generated by (2.10c) and u
γ
i

ˇ

ˇ

ˇ

2D

is given by (2.3).

The slightly more complicated possibility is when (2.10c) is to form a regular Sturm-Liouville problem

on a finite interval 0 ă ζ ă ζo for some ζo ą 0, resulting in λ ď 0. The identity cos
´

2pπ{2´ θq
¯

“ ´ cosp2θq

allows to arrange the sign in (2.10b) to give the same form as before with respective solutions cempπ{2´θ; qq,
sempπ{2´ θ; qq. The variable transformation ξ ÞÝÑ ξ `πı{2, where ı is the imaginary unit, yields the desired
signs in (2.10a), but eventuates in a formally complex basis Cempξ ` πı{2; qq, Sempξ ` πı{2; qq. In reality
since definitions (2.11b) use either even or odd frequencies, the functions of the transformed variable will
have the same series coefficients, but with alternating signs. The multiple of ı that appears for the odd pair
is removed due to linearity in order to have a real solution. The fact that the odd Cem and Sem swap, is
equivalent to reshuffling the coefficients within the double sum in (2.12) and thus might be disregarded. The

next step is to identify the relationship between the coefficients a
piq
nm, b

piq
nm, α

piq
nm and β

piq
nm entailing a valid

anisotropic solution.

Remark 2.2 A fundamental disparity between the functions sempθq, cempθq and elementary sinpmθq, cospmθq
is that the latter form a pair of independent solutions to a differential equation with a common eigenvalue that
depends on m. By contrast, sem, cem are mere labels, each constituting a solution to a distinct differential
equation with m denoting the placement in a sequence of eigenvalues. The sequence of eigenvalues and
eigenfunctions solving the Sturm-Liouville problem (2.10b) with periodic boundary conditions comprises four
interlaced sequences given by (2.11a).

Remark 2.3 The linear combination of the type used in (2.12) should generally include the index m “ 0, i.e.

terms of the form b
piq
n0Znpζq ce0pθqCe0pξq. A valid anisotropic solution must satisfy the continuity conditions

(1.5), which result in the conclusion that b
piq
n0 “ 0 for all i and n.
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Corollary 2.1 Suppose the conditions of theorem 2.1 hold. Then there exists an anisotropic, 2π-periodic

solution to (1.4) in the domain
!

pξ, θ, ζq
ˇ

ˇ

ˇ
ξin ď ξ ď ξex, 0 ď θ ă 2π, ζ P I

)

, where I “ rζo, 8q for some

real ζo, or I “ r0, ζos with some ζo ą 0. The solution includes elliptic harmonics m ě 1 if and only if

detCpmq “ det

¨

˚

˚

˚

˚

˚

˚

˝

A
pmq
1

B
pmq
1

A
pmq
2

B
pmq
2

. . .
. . .

A
pmq
N´1

B
pmq
N´1

B
pmq
N A

pmq
N

˛

‹

‹

‹

‹

‹

‹

‚

“ 0, (2.13a)

where

A
pmq
i “

ˆ

sempθiq cempθiq
se1

m
pθiq ce1

m
pθiq

˙

, B
pmq
i “ ´

ˆ

ki sempθiq ki cempθiq
se1

m
pθiq ce1

m
pθiq

˙

. (2.13b)

Proof The two-dimensional part in (2.12) satisfies conditions (1.5) via theorem 2.1. Imposing (1.5) for the
tridimensional part of (2.12) makes it obvious that the choice of bases for Apξq and Zpζq in (2.12) has no
bearing on the ability to satisfy (1.5). Thus the result will hold for all domain types above that without
loss of generality encompass all bounded solutions accorded by (2.10c). The adjacency structure of (1.5)
results in a system identical in form to (2.5), homogeneous for all combinations of m and n in (2.12) for

coefficients of type a
piq
nm, b

piq
nm and α

piq
nm, β

piq
nm. The only difference is that the derivatives of sempθq and cempθq

cannot be expressed via the same functions as elegantly as with the elementary sine and cosine functions.
Instead the derivatives are obtained by an element-wise differentiation of series (2.11a). Since the system is
homogeneous, the only option to obtain a non-trivial solution is via a non-zero determinant. �

The coefficients in the series defining the Mathieu functions (2.11a) and (2.11b) are given by a second order
recurrence relations that form an infinite eigenvalue-eigenvector system, distinct for even and odd m values
and sem and cem functions [13, 8.62]. When sorted in ascending order, the m-th eigenvalue corresponds to
the m-th value in the Sturm-Liouville sequence of the separation constant a in (2.10b). The m-th eigenvector

gives the coefficients A
pmq
r and B

pmq
r for cem or sem series. To compute the coefficients in practice one

constructs ever increasing matrices and calculates the corresponding eigenvalues and eigenvectors. The series

is summed simultaneously for all 0 ď θ ă 2π and function normalised so as to have
2π
ş

0

B2pθqdθ “ π. Thus

the source of error is twofold: the truncation of the infinite matrix and the error inherent to the algorithm
computing eigenvalues and eigenvectors. MATLAB and Octave offer no built-in routines to compute the
Mathieu functions, but routines to solve eigenvalue problems are readily available. All results involving
Mathieu functions were computed using Octave [14] up to a tolerance of ǫ “ 10´12 and ǫ “ 10´8 for 2D and
3D flow respectively: the eigensystem size is doubled every iteration and only the first half of the coefficients
is used for series summation (since coefficients in positions close to the end of the vector are not expected to
be accurate) until the maximal difference between the function thus obtained and previous iteration is less
than ǫ. There is no user control of accuracy of output returned by the built-in function eig computing the
eigenvalues and eigenvectors. Therefore the above tolerance is the best that is reasonably achievable for a
wide range of q and m without full control of the second source of error.

Hereinafter the harmonics ensuing by (2.5) and (2.13) are respectively referred to as basic and elliptic,
and denoted by m and m to avoid confusion. The theory governing the inclusion of basic harmonics in both
(2.3) and (2.12) is coincident with that of polar and spherical coordinates, albeit the flow itself is completely
different. The elliptic harmonics are unique to the current setting and hence the focus of the analysis below.
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3 Compatibility and singular manifolds

The singular manifold is defined as all layouts tθiu
N
i“1

and concomitant diffusivities tKiu
N
i“1

, for which
detCpmq “ 0. In order to prove several instructive characteristics it is useful to employ the LU decomposition
of Cpmq:

C
pmq “

¨

˚

˚

˚

˚

˚

˚

˝

I2ˆ2

I2ˆ2

. . .

I2ˆ2

LN,1 ¨ ¨ ¨ LN,N´1 I2ˆ2

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

A
pmq
1

B
pmq
1

A
pmq
2

B
pmq
2

. . .
. . .

A
pmq
N´1

B
pmq
N´1

UNN

˛

‹

‹

‹

‹

‹

‹

‚

, (3.1a)

where A
pmq
i , B

pmq
i are defined in (2.13b) and

UNN “ A
pmq
N ´ p´1qNB

pmq
N A

pmq´1

1
B

pmq
1

ˆ . . . ˆ A
pmq´1

N´1
B

pmq
N´1

. (3.1b)

With this

detCpmq “
N

ź

i“1

detA
pmq
i det

!

I ´ p´1qNA
pmq´1

N B
pmq
N A

pmq´1

1
B

pmq
1

ˆ . . . ˆ A
pmq´1

N´1
B

pmq
N´1

)

“

N
ź

i“1

detA
pmq
i det

´

A
pmq´1

N B
pmq
N

¯

det
!

B
pmq´1

N A
pmq
N ´ p´1qNA

pmq´1

1
B

pmq
1

ˆ . . . ˆ A
pmq´1

N´1
B

pmq
N´1

)

“

N
ź

i“1

detA
pmq
i det

!

I ´ p´1qNA
pmq´1

1
B

pmq
1

ˆ . . . ˆ A
pmq´1

N B
pmq
N

)

. (3.2)

To arrive at the last equality the term det
´

A
pmq´1

N B
pmq
N

¯

was moved to the end and merged with the matrix in

the curly braces, relying on the fact that for the purpose of calculating the determinant a product of matrices
might be reordered arbitrarily even for matrices that do not commute under multiplication. Calculation (3.2)

implies two important conclusions. One, barring the possible singularity of any of the A
pmq
i matrices, the

matrix in the curly braces is expected to be responsible for the practical exploration of the singular manifold.
Two, the ability to perform the cyclic shifting executed in (3.2) permits to renumber the contiguity curves
θi at will for the determinant calculation alone without doing so elsewhere.

The compatibility manifold is defined by condition (2.4). For any number of sectors N this relation defines
possible combinations of diffusivities and contiguity angles, for which a valid anisotropic solution exists. In
axisymmetric geometries such as polar and spherical coordinates this manifold was degenerate in the sense
that the solution was not encumbered by such a condition. Broken axial symmetry notwithstanding, the
number of permissible layouts tθiu

N
i“1

and diffusivities tKiu
N
i“1

is still infinite.

(a) Two sectors

The two sector configurations are the simplest, yet useful in the analysis of more complicated layouts. The
compatibility condition (2.4) reduces to cosp2θ2q ´ cosp2θ1q “ 0, defining four relations θi`1pθiq, i “ 1, for
which anisotropic solutions exist:

(a) θi`1 “ θi ` π, 0 ď θi ă π

(b) θi`1 “ π ´ θi, 0 ď θi ă π{2
(c) θi`1 “ 2π ´ θi, 0 ď θi ă π

(d) θi`1 “ 3π ´ θi, π ď θi ă 3π{2.

(3.3)
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As is shown hereunder, relations (3.3) pertain to configurations of a higher number of sectors as well. For
this reason the subscript notation of two generic adjacent sectors was retained. For easier visualisation these
layouts are depicted in figure 3. Note that group (c) unifies two sub-groups labelled as (c1) and (c2). The
determinant of Cpmq vanishes when

cos
`

2mpθ2 ´ θ1q
˘

“ 1. (3.4)

(a)

θ1

(b)

θ1

(c1)

θ1

(c1)

θ1

(d)

θ1

(c2)

θ1

(b)

θ1

(d)

θ1

(c2)

θ1

Figure 3: Partially symmetric compatible configurations for two sectors (black contiguity curves only; black
labels conform to (3.3) with i “ 1) and three sectors (all contiguity curves; green / grey labels conform to
(3.3) with i “ 2).

System (2.5) with m “ 2 is insoluble only if θ2 ´ θ1 “ π{2, 3π{2, i.e. an anisotropic solution exists for all
four foregoing cases. Basic harmonics with m ‰ 2 appear when (3.4) is satisfied. For instance, m “ 1 gives
θ2 ´ θ1 “ π, i.e. group (a) in (3.3) includes the degrees of freedom associated with m “ 1 in its entirety.
Any basic harmonic m ě 3 implies θ2 ´ θ1 “ πℓ{m, where ℓ is an integer satisfying 1 ď ℓ ď m ´ 1. Thus
any pair ℓ,m corresponds to a unique configuration in each of the groups (b) – (d) in (3.3):

(b) θ1 “ πp1 ´ ℓ{mq{2 (c) θ1 “ πp2 ´ ℓ{mq{2 (d) θ1 “ πp3 ´ ℓ{mq{2
θ2 “ πp1 ` ℓ{mq{2 θ2 “ πp2 ` ℓ{mq{2 θ2 “ πp3 ` ℓ{mq{2.

(3.5)

For proofs and additional technical detail regarding singular manifolds defined by detCpmq the reader is
referred to [12].

By contrast, elliptic harmonics are not encumbered by a restriction on any specific value of m. Thus any
configuration in (3.3), for which detCpmq “ 0, admits the associated degrees of freedom. Using the central
line in (3.2) and swapping the indices 1 and 2 yields

detCpmq “ detA
pmq
2

detB
pmq
1

det
´

B
pmq
1

´1

A
pmq
1

´ A
pmq
2

´1

B
pmq
2

¯

(3.6a)
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provided that B
pmq
1

and A
pmq
2

are invertible. Generally this is not a trivial conclusion: whilst

detB
pmq
1

“ k1Wmpθ1q and detA
pmq
2

“ Wmpθ2q have a Wronskian-like pattern with

Wmpθiq “ sempθiq ce
1
m

pθiq ´ se1
m

pθiq cempθiq,

the functions sem and cem do not constitute a pair of independent solutions to (2.10b) with the same value
of a. The Wronskian of (2.10b) is a constant function, but the Wronskian of the equation, whose two
independent solutions are sem and cem, is not, and there is no elegant result as to its roots. Thus in theory
it is possible that in some instances Wm vanishes. In practice none of the extensive parametric scans run for
a variety of m, q and θ values yielded such an example.

The calculation in (3.6a) for the four groups of configurations in (3.3) with the aid of trigonometric
identities applied to (2.11a) is technical, but elementary:

A
pmq
i

´1

B
pmq
i “

1

Wm

ˆ

se1
m
cem ´ki sem ce1

m
p1 ´ kiq cem ce1

m

pki ´ 1q sem se1
m

ki se
1
m
cem ´ sem ce1

m

˙

ˇ

ˇ

ˇ

ˇ

ˇ

θi

, (3.6b)

whilst B
pmq
i

´1

A
pmq
i “ A

pmq
i

´1

B
pmq
i

ˇ

ˇ

ˇ

ki ÞÝÑ1{ki

. The identity cempθ2q “ p´1qm cempθ1q holds for all groups in

0 qcr 5 10 15

0

0.5

1

1.5

q

θ
1
{π

0 5 qcr 10 15

0

0.5

1

1.5

q

θ
1
{π

Figure 4: Compatible two sector configurations for elliptic harmonics m “ 2 (left) and m “ 3 (right). Curve
colour and style correspond to (3.3) with i “ 1: dashed green / grey (b), dashed black (c), solid green / grey
(d).

(3.3), whilst for group (a) sempθ2q “ p´1qm sempθ1q, and sempθ2q “ ´p´1qm sempθ1q for (b)–(d). Thus for

group (a) the matrix B
pmq
1

´1

A
pmq
1

´A
pmq
2

´1

B
pmq
2

in (3.6a) is the zero matrix for any m and θ1, ergo when the
ellipse is divided into two equal sectors (of any orientation), all elliptic harmonics are permissible in (2.12).
For groups (b) – (d) the foregoing matrix has zero entries on the main diagonal, resulting in

detCpmq “ 4k1p1 ´ k2q2 cempθ1q ce1
m

pθ1q sempθ1q se1
m

pθ1q. (3.6c)

Thus detCpmq vanishes at the roots and critical points of the functions cem, sem, independently of ki and
similarly to the basic harmonics in (3.4). Thus the only dependence of interest is that on q. Figure 4 depicts
the variation of the roots of detCpmq with q for different values of m. The first observation is that θ “ 0, π{2, π
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are always either a root or critical point of each the four functions in (2.11a), whereby the angles θ1 “ π{2, π
form horizontal symmetry lines for θ1pqq. The remaining roots of detCpmq can only be computed numerically.
For sufficiently small q they come in pairs, whose number increases with m. The shape resembles a blade of
grass with the tip at q “ 0, where the pair of roots merges. There exists a critical value qcr, above which
either one (groups (b) and (d) in (3.3)) or two (group (c) in (3.3)) new unpaired branches appear. The
abscissa variable q is directly related to the eigenvalues endowed by the Sturm-Liouville problem of (2.10c)
with appropriate boundary conditions. The salient conclusion following from the qualitative form of θ1pq; mq
is twofold: for any value of q there are multiple values of θ1, implying that regardless of the interval and
boundary conditions in (2.10c) a number of viable anisotropic configurations exists; this number grows with
the elliptic harmonic frequency m, but is constant for each m below and above qcr. The symmetric layouts
with θ1 “ 0, π{2 allow elliptic harmonics of any m and q, i.e. any boundary conditions for (2.10c) that result
in a soluble Sturm-Liouville problem. Some configurations support combinations of an elliptic harmonic m

and a basic harmonic m, obtained by locating intersections of the curves in figure 4 with the horizontal lines
θ1 in (3.5).

0 θ1{π 1
2

1 3
2

2
0

1
2

1

3
2

2

θ2{π

θ
3
{π

Figure 5: Manifold (3.7) with K1 “ 1, K2 “ 10, K3 “ 0.1 and θ1 “ π
4
. Dotted lines mark the subdomain

θ1 ă θ2 ă θ3.

(b) Three sectors

The compatibility condition (2.4) for a 3-sector configuration might be re-written as

˜

1

K1

´
1

K2

¸

cosp2θ1q `

˜

1

K2

´
1

K3

¸

cosp2θ2q `

˜

1

K3

´
1

K1

¸

cosp2θ3q “ 0. (3.7)

Figure 5 shows a typical example of the manifold shape for N “ 3. Out of the four strands that stem from
the double frequencies present in (2.4) only configurations satisfying θ1 ă θ2 ă θ3 are valid. The diffusivities
Ki affect the amplitude of θ2pθ3q or equivalently the horizontal distance between the strands. Depending on
the relative magnitude of the factors preceding the cosines in (3.7), the strands might be oriented horizontally
instead. To pinpoint layouts that accord elliptic harmonics, one must traverse the permissible portion of each
strand and calculate detCpmq. As the number of sectors grows, accurate numerical identification of layouts,
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where detCpmq “ 0, becomes increasingly difficult since Cpmq are ill-conditioned near the sought singularities.
Thus locating symmetries that lead to analytical insight is even more important than for two sectors.

An immediate observation is that if cosp2θiq “ cosp2θi`1q for any two adjacent angles, then all three
cosp2θiq in (3.7) must equal. This defines a family of symmetric compatible configurations related to (3.3):
since groups (b)–(d) are mutually exclusive, the only way to ensure that (3.3) are satisfied pairwise for every
two angles out of three, is to add a contiguity curve from (a) to any layout in groups (b)–(d). Figure 3
depicts this construction and associated renumbering. For the purpose of calculating detCpmq renumber θi
so that θ1 and θ2 satisfy (a), and the remaining contiguity curve is θ3. Then for any two adjacent angles by
(3.6b)

A
pmq
i

´1

B
pmq
i A

pmq
i`1

´1

B
pmq
i`1

“
1

Wm

ˆ

kiki`1 sem ce1
m

´ se1
m
cem pkiki`1 ´ 1q cem ce1

m

p1 ´ kiki`1q sem se1
m

sem ce1
m

´kiki`1 se
1
m
cem

˙

ˇ

ˇ

ˇ

ˇ

ˇ

θi

. (3.8)

Then using the form given in the middle line of (3.2) with N “ 3 and the reversed product below (3.6b)
with 1{k3 “ k1k2 yields

detCpmq “ 4k3p1 ´ k1k2q2Wmpθ1q cempθ1q ce1
m

pθ1q sempθ1q se1
m

pθ1q. (3.9)

A comparison between (3.9) and (3.6c) makes it obvious that, bar any roots of Wmpθ1q, figure 4 suffices to
provide the dependence of the m-harmonic admitting layout tθiu on q with the ordinate θ1 as marked in
figure 3.

(c) Four and more sectors

Cyclic shifting of (3.2) for N “ 4 allows to infer that

detCpmq “ detpA
pmq
1

qdetpA
pmq
2

qdetpB
pmq
3

qdetpB
pmq
4

qˆ (3.10)

det
´

B
pmq
4

´1

A
pmq
4

B
pmq
3

´1

A
pmq
3

´ A
pmq
1

´1

B
pmq
1

A
pmq
2

´1

B
pmq
2

¯

.

A result similar to (3.9) follows when the angles θi are related to one another as in figure 3, i.e. form a config-
uration that is symmetric under reflexion across both the horizontal and vertical axes: for some 0 ă θ1 ă π{2,

the rest of the angles are θ2 “ π ´ θ1, θ3 “ π ` θ1 and θ4 “ 2π ´ θ1. The matrix A
pmq
1

´1

B
pmq
1

A
pmq
2

´1

B
pmq
2

follows immediately by (3.8). The matrix B
pmq
4

´1

A
pmq
4

B
pmq
3

´1

A
pmq
3

might be obtained via (3.8) by mapping

B
pmq
i`1

´1

A
pmq
i`1

B
pmq
i

´1

A
pmq
i “ A

pmq
i`1

´1

B
pmq
i`1

ˇ

ˇ

ˇ

ki`1 ÞÝÑ1{ki`1

A
pmq
i

´1

B
pmq
i

ˇ

ˇ

ˇ

ki ÞÝÑ1{ki

.

With 1{pk3k4q “ k1k2

detCpmq “ 4k3k4p1 ´ k1k2q2W 2

m
pθ1q cempθ1q ce1

m
pθ1q sempθ1q se1

m
pθ1q, (3.11)

again leading to the conclusion that the compatibility of symmetric four sector configurations for elliptic
harmonics is fully described by figure 4. N “ 4 is the largest number of partitions that is fully amenable to
considerations of reflexion symmetry.

The theory for symmetric layouts developed above might be extended via mathematical induction for
a higher number of subdomains. The following lemma allows to reduce a layout of N subdomains to one
of N ´ 1, provided that any two (not necessarily adjacent) contiguity curves satisfy cosp2θiq “ cosp2θjq for
i ‰ j.
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Lemma 3.1 Let a configuration defined by layout tθiu
N
i“1

and respective set of diffusivities Ki satisfy the
compatibility condition (2.4) with cosp2θiq “ cosp2θjq for some 1 ď i ă j ă N . Then if

1

Ki

`
1

Kj

‰
1

Ki`1

`
1

Kj`1

, (3.12a)

the reduced configuration of N ´ 1 sectors tϑℓu with respective tKℓu such that

ϑℓ “ θℓ,
1

Kℓ

“

$

’

’

’

&

’

’

’

%

1

Kℓ

`
1

Ki`1

ℓ “ 1, . . . , i ´ 1, j ` 1, . . . , N

1

Kℓ

`
1

Ki

ℓ “ i ` 1, . . . , j

(3.12b)

also satisfies (2.4). If condition (3.12a) does not hold, the reduced configuration of N ´ 2 sectors tϑℓu with
respective tKℓu such that

ϑℓ “ θℓ,
1

Kℓ

“

$

’

’

’

&

’

’

’

%

1

Kℓ

`
1

Ki`1

ℓ “ 1, . . . , i ´ 1, j ` 1, . . . , N

1

Kℓ

`
1

Ki

ℓ “ i ` 1, . . . , j ´ 1

(3.12c)

also satisfies (2.4).

Proof Write out the compatibility condition (2.4) as

˜

1

K1

´
1

K2

¸

cosp2θ1q ` . . . `

˜

1

Ki

´
1

Ki`1

¸

cosp2θiq ` . . .`

˜

1

Kj

´
1

Kj`1

¸

cosp2θjq ` . . . `

˜

1

KN

´
1

K1

¸

cosp2θN q “ 0. (3.13)

Define ϑℓ “ θℓ for all 1 ď ℓ ď i ´ 1 and i ` 1 ď ℓ ď N , i.e. the partition of the reduced configuration simply
skips θi. In order for it to satisfy (2.4), the reciprocals of the new diffusivities Ki must satisfy the following
linear system of size N ´ 1:

¨

˚

˚

˚

˚

˚

˝

1 ´1
1 ´1

. . .
. . .

1 ´1
´1 1

˛

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1{K1

...
1{Ki´1

1{Ki`1

...
1{KN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1{K1 ´ 1{K2

...
1{Ki´1 ´ 1{Ki

1{Ki`1 ´ 1{Ki`2

...
1{Kj´1 ´ 1{Kj

1{Kj ´ 1{Kj`1 ` 1{Ki ´ 1{Ki`1

1{Kj`1 ´ 1{Kj`2

...
1{KN ´ 1{K1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.14)

The right-hand side entry at row j ´ 1 follows from cosp2θiq “ cosp2θjq.
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System (3.14) is singular: the sum of all rows of the matrix results in the zero vector. Since the first N ´2
rows are independent, the rank of this matrix is N ´ 2. For a non-trivial solution to exist the right-hand
side vector must lie in the kernel of the transposed matrix. In this case the rank deficiency is 1 and the
linear combination of matrix rows giving the zero vector is a simple sum, whereby if the sum of entries of
the right-hand side vector equals zero, a non-trivial solution with exactly one degree of freedom must exist.
The verification that the right-hand side vector sums to zero is immediate.

To conclude the proof one must construct a sequence tKℓu, ℓ “ t1, . . . , i´1, i`1, . . . , Nu, whose entries
are positive with no two adjacent values matching. Although this sequence might not be unique, one such
construction suffices. Keeping K1 as a degree of freedom, (3.14) yields

1

Kℓ

“

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

1

K1

´
1

K1

`
1

Kℓ

ℓ “ 2, . . . , i ´ 1, j ` 1, . . . , N

1

K1

´
1

K1

`
1

Ki

ℓ “ i ` 1

1

K1

´
1

K1

`
1

Ki

´
1

Ki`1

`
1

Kℓ

ℓ “ i ` 2, . . . , j.

(3.15a)

By observation no two adjacent entries Kℓ coincide by virtue of similarly distinct Kℓ except for ℓ “ j and
ℓ “ j ` 1. To have Kj ‰ Kj`1 condition (3.12a) must hold. At this point set

1

K1

“
1

K1

`
1

Ki`1

, (3.15b)

rendering all Kℓ ą 0 and giving (3.12b). If (3.12a) does not hold, the terms with cosp2θiq and cosp2θjq in
(3.13) cancel. Number the remaining sectors from 1 to N , skipping both i and j. A process identical to
the above gives a system of N ´ 2 equations, with only N ´ 3 independent, resulting in (3.12c). The only
non-trivial check is that Kj´1 ‰ Kj`1. Using (3.12c) and (3.12a) reduces this negation to Kj ‰ Kj`1, which
holds by the assumption on the original set tKℓu. �

4 Critical points of mixed type

The presence of anisotropy allows for a critical point that combines saddle-node characteristics. The necessary
condition for such a point to come into existence is to be located on the contiguity surface θi between two
sectors. Condition (1.5b) means that on two sides of any θi the derivative uθ is discontinuous except when
it vanishes. Consider a regular Sturm-Liouville problem over an elliptic cylinder with p2.10cq satisfying
Z 1
np0q “ Z 1

np1q “ 0. On an elliptic cylinder shell of a fixed value of ξ the contiguity curves are straight lines
and the solution is symmetric about ζ “ 1

2
. Taking all input parameters as in figure 2, using just one 3D

component in (2.12) corresponding to n “ 2 and tuning α
p1q
2,2 results in the isocontour map in figure 6. Six

of the critical points on the symmetry line ζ “ 1

2
are regular: four nodes and 2 saddles (black diamonds),

whilst two are of the mixed type (green / grey diamonds): the curvature of the contours on one side of
the contiguity border θi is characteristic of a saddle, but on the other side the behaviour is node-like. The
creation of this unconventional type of critical point might be viewed as a collision of one saddle and one
node moving toward the contiguity line from two sides when the parameters are tuned. It must be noted
that nodes seen in cross-sectional contour maps as in figure 6 are not local minima or maxima, since the
maximum principle prevents such an occurrence.
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0 θ1 1 θ2 2

0

0.5

1

θ{π

ζ

3D coefficients

a
p1q
2,2 “ 2.5294, a

p2q
2,2 “ ´3.7163

b
p1q
2,2 “ 0, b

p2q
2,2 “ 14.027

α
p1q
2,2 “ 3.5, α

p2q
2,2 “ ´5.1423

β
p1q
2,2 “ 0, β

p2q
2,2 “ 19.409

Figure 6: Isocontour map of (2.12) with m “ 2 and m “ 12 over the pθ, ζq plane at the elliptic shell
ξ “ pξin ` ξexq{2 for the Sturm-Liouville problem Z 1p0q “ Z 1p1q “ 0; all parameters and 2D coefficients
as in figure 2; coefficient values as stated (given to 5 significant figures); contour level linearly distributed
(density corresponds to gradient). Black diamonds: regular critical points, green / grey diamonds: mixed
type critical points.

5 Positivity

The positivity of solutions to (1.1) is a desired property similarly to related elliptic or parabolic equations.
Most of the reasoning below holds for any system of coordinates, where an anisotropic solution to (1.1) exists.
Infra θ denotes the coordinate that traces closed orbits in Cartesian space and together with ξ forms the
plane, where the periodic anisotropy partition is defined, and ζ is normal thereto. Define Ωi as the support
domain of solution ui:

Ωi “
!

pξ, θ, ζq
ˇ

ˇ

ˇ
ξin ď ξ ď ξout, θi´1 ď θ ď θi, ζ P I,

)

, 1 ď i ď N,

where the index i outside of the indicated range is wrapped as required by periodicity, and the interval I

might be finite or infinite as in corollary 2.1, or redundant for a planar setting. The full domain is Ω “
N
Ť

i“1

Ωi,

and the contiguity surface between Ωi and Ωi`1 is Γi. Equation (1.1) is linear in ũ “ uγ and henceforth the
discussion focusses on ũ, since its positivity guarantees the positivity of u. The function ũi is the restriction
of ũ to Ωi. It is possible to divide ũi into two components ũi “ ũi,h`ũi,sh, where ũi,h is harmonic (∆ũi,h “ 0)
and ũi,sh is strictly subharmonic (∆ũi,sh ą 0) or superharmonic (∆ũi,sh ă 0) [15, ch. 2, §1] for any C ‰ 0,
as well as free of any harmonic components. Since the equation is linear, this requirement is fulfilled by
verifying none of the summands satisfy its homogeneous part. In (2.1) and (2.9) such division corresponds
to the homogeneous and inhomogeneous parts. The function ũi,h is in C2pΩiq X CpBΩiq, but it is also
2π-periodic and thus in C2pΩq X CpBΩq, and harmonic not only in Ωi, but in Ω. The extension to Ω is
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denoted by ũi,h

ˇ

ˇ

Ω
and is not to be confused with ũ, which is neither harmonic nor in the above continuity

class (it is infinitely differentiable with respect to ξ and ζ, but the derivative Bθũ is discontinuous on all Γi).
The sufficient conditions for the positivity of ũ rely on the maximum principle for elliptic operators. As

aspects from its proof are required for inferences in the anisotropic setting, it is briefly restated following

[16].1 Suppose f P C2pΩqXCpBΩq and ∇ ¨ pK∇fq ě 0 with K ą 0. Define w “ max
Ω

!

f ´max
BΩ

f, 0
)

. Observe

that w ě 0 since min
Ω

w “ 0. Locate the largest set Ωo Ă Ω such that w “ f ´ max
BΩ

f ą 0 in ΩozBΩo and

w “ 0 on BΩo. Then if Ωo is not empty,

0 ď

ż

Ωo

w∇ ¨ pK∇fqdV “ ´

ż

Ωo

p∇wq ¨ pK∇fqdV “ ´

ż

Ωo

K
ˇ

ˇ∇w
ˇ

ˇ

2
dV ď 0, (5.1a)

where a corollary of the divergence theorem (Green’s identity) was used:

ż

Ωo

∇ ¨ pwK∇fqdV “

ż

Ωo

!

w∇ ¨ pK∇fq ` p∇wq ¨ pK∇fq
)

dV “

¿

BΩo

´

wK∇f ¨ n̂
¯

dS “ 0, (5.1b)

with the integrals denoting volume or area and surface or contour integration depending on the dimension
of Ωo. The inequalities in (5.1a) are only possible if w ” 0 in Ω and thus max

Ω

f “ max
BΩ

f . Similarly suppose

∇ ¨ pK∇fq ď 0 and define w “ min
Ω

!

f ´min
BΩ

f, 0
)

. Now w ď 0 and (5.1a) still holds, yielding min
Ω

f “ min
BΩ

f .

Both inferences hold if ∇ ¨ pK∇fq “ 0, whence min
BΩ

f ď f ď max
BΩ

f .

It therefore follows that positive boundary conditions on BΩ for the extended function ũi,h

ˇ

ˇ

Ω
suffice to

have ũi,h ą 0 in Ωi. However, the infimum and supremum of ũi,h might be tighter than those provided by
ũi,h

ˇ

ˇ

Ω
. In fact, it is possible to have ũi,h ą 0 without ũi,h

ˇ

ˇ

Ω
ą 0. Furthermore, the bounds of ũi,h fall on

the boundary BΩi, which includes the surfaces Γi´1 and Γi that except for BΓi´1, BΓi are in the interior of
Ω. The harmonic part of ũ, denoted by ũh, is the collection of restrictions ũi,h. To have ũh ą 0 in Ω, a
simple, but overly restrictive sufficient condition is ũi,h

ˇ

ˇ

Ω
ą 0 on BΩ for all i. A necessary and sufficient, but

harder to implement condition is ũi,h ą 0 on BΩi for all i. The conceptual distinction between a boundary
condition in a classical setting and the anisotropic problem here is that the condition is only prescribed on
BΩi˚

zpΓi˚´1 Y Γi˚
q for one index i˚. Thus the anisotropic solution might attain a minimum or maximum

at an interior point in Ω on any Γi when C “ 0, but it might not be a classical node, even if all three
components of ∇ũ vanish thereat, because the behaviour on each side of Γi is determined by the distinct
functions ũi,h and ũi`1,h.

To complete the argument one must look at ũsh, the collection of ũi,sh. From (1.1)

∇ ¨
`

K∇ũ
˘

“ ´γC. (5.2)

Define an auxiliary problem ∆ũ` “ 1, where the sought function ũ` is free of harmonic components.
In polar and spherical coordinates ũ` “ ξ2

L

2 and ũ` “ ξ2
L

6 respectively. In the elliptic coordinates

ũ` “ f2

´

coshp2ξq ` cosp2θq
¯M

8. In all three cases ũ` ě 0 and ũ` “ 0 is only possible when ξ “ 0. In the

former two cases ξ “ 0 is a point. In the elliptic coordinates it is a line joining the two foci, formally an
ellipse of area zero. Moreover, Bξũ` ě 0, and again Bξũ` “ 0 only at ξ “ 0. Since ũ` is subharmonic, it is
bounded from above by a maximum attained on the boundary of the domain. If ξ “ 0 is excluded from the
domain, Bξũ` ą 0 implies that out of the two arcs of BΩ or BΩi corresponding to constant ξ, the maximum
is attained on ξout.

1In [16] the term anisotropic refers to an unrelated framework, where the diffusivity tensor contains off-diagonal entries.
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The solution to (5.2) in Ωi is ũi,sh “ ´γCũ`

ˇ

ˇ

Ωi

L

Ki. When γC ă 0, clearly ũi,sh ą 0, giving ũi ą 0
in Ωi and thence ũ ą 0 in Ω. The “slack” min ũsh might be used to lower the minimum of ũh to zero by
simple addition. When γC ą 0, there are three options that ensure positivity of the sum ũi “ ũi,h ` ũi,sh.
One, since a superharmonic function is bounded from below by a minimum on the boundary, it is possible
to demand that the extensions ũi

ˇ

ˇ

Ω
ą 0 on BΩ, or more restrictively ũi ą 0 on BΩi, for all i. Two, the

monotonicity in ξ established above allows to infer that given a solution ũh ą 0, there exists ξout ą 0 small
enough to ensure ũ ą 0. Three, if the range of ξ is fixed, there exists C such that |γC| is small enough to
achieve a similar outcome.

6 Conclusion

The successful construction of anisotropic solutions in elliptic cylinder coordinates shows that the axial
symmetry inherent to cylindrical and spherical geometries is not essential. However, in the elliptic coordinate
system a new compatibility condition is introduced as part of theorem 2.1, relating the anisotropic layout’s
contiguity angles and subdomain diffusivities. Whether the emergence of this condition is a direct result
of the non-axisymmetric geometry or merely a peculiarity of this specific coordinate system, remains to be
seen. A complete analysis of the remaining nine coordinate systems, where Laplace’s equation is separable,
will be able to determine that, but is outside of the ambit of this study. Compared to the unencumbered
by such a compatibility condition cylindrical and polar coordinate systems, the set of all layouts, for which
azimuthally anisotropic solutions exist, is somewhat limited, albeit still infinite. In the case of diffusion with
no bulk source or sink, i.e. C “ 0, no compatibility condition is needed.

Configurations with a high number of subdomains, but harbouring a partial symmetry cosp2θiq “
cosp2θjq, i ‰ j, might be reduced to an equivalent layout with fewer sectors. In practice the reduction
is more effectively used in reverse: based on a configuration satisfying the compatibility condition (2.4), one
constructs a family of configurations with one sector more, all of which still satisfy (2.4).

The number of harmonics incorporated into the solution is determined by the desired boundary conditions.
Standard conditions (Dirichlet, Neumann or Robin) might be imposed on the boundaries of any one sector,
identically to the isotropic setting. The conditions on the complement boundary follow by continuity of
u and its azimuthal flux, resulting in linear systems for the coefficients in both 2D and 3D solutions. For
a degree of freedom to be available for use in boundary conditions, the associated homogeneous linear
system must be singular. The only exception is the m “ 2 harmonic in the 2D part of the solution, for
which the linear system is inhomogeneous when C ‰ 0, and thus must be non-singular. The variety and
complexity of topological features accorded by even a few harmonics is remarkable, i.e. the inclusion of any
degrees of freedom responsible for tangential velocity components (the equivalent of azimuthal velocity in an
axisymmetric geometry) induces strong gradients and thus momentum transfer in both ξ and θ directions.
The presence of numerous critical points means the diffusing particles are likely to spend prolonged periods
of time trapped in regions with low velocities.

When an isolated critical point is situated on the contiguity curve between two subdomains of distinct
diffusivities, it is possible that the point’s type, as determined by the topological terrain on two sides of
the curve, is mismatched: node on one side and saddle on the other. One of the consequences of such an
occurrence is that although the half-node might be stable, its pairing with a half-saddle renders the critical
point unstable overall. Furthermore, the saddle-node pairings create a conceptual gradation that bridges
the extremes of stable and unstable nodes. Figure 7 illustrates this effect. For simplicity consider a surface
oriented in space so that the normal at the critical point is vertical. Around a stable node the gradient
vector always points upwards. A saddle point partitions the surface into four quadrants, where the gradient
vector’s orientation alternates. In the vicinity of a mixed point comprising half a saddle and half a stable
node the gradient points upwards in three quadrants, whereas with half an unstable node there is only one
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Figure 7: Saddle-node mixed critical point terrain: saddle-unstable-node and saddle-stable-node

such quadrant. Of course, near an unstable node there are no trajectories with an upward gradient. Thus
the presence of mixed type critical points creates a continuous transition in the gradient vector orientation
between a stable node and an unstable one. The emergence of mixed type critical points is directly related
to the fact that the classical maximum principle for harmonic functions does not hold for the harmonic part
of the anisotropic problem, and maxima or minima might be situated on the contiguity curves interior to
the annulus boundary.

The existence of anisotropic solutions in other curvilinear coordinate systems is a topic of future study.
Anisotropic solutions to other classical partial differential equations might also be of value, e.g. extending the
theory developed herein to wave propagation in anisotropic media will be useful in modelling or quantifying
of the viscoelastic properties of biological tissues [17].
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