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Abstract. Pipe networks collecting gas in sanitary landfills operate under the

regime of a weakly compressible isothermal flow of ideal gas. The effect of

compressibility has been traditionally neglected in this application in favour of

simplicity, thereby creating a conceptual incongruity between the flow equations

and thermodynamic equation of state. Here the flow is solved by generalisation

of the classic Darcy-Weisbach equation for an incompressible steady flow in a

pipe to an ordinary differential equation, permitting continuous variation of

density, viscosity and related fluid parameters, as well as head loss or gain due

to gravity, in isothermal flow. The differential equation is solved analytically in

the case of ideal gas for a single edge in the network. Thereafter the solution is

used in an algorithm developed to construct the flow equations automatically

for a network characterised by an incidence matrix, and determine pressure

distribution, flow rates and all associated parameters therein.
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1. Background

1.1. The landfill problem

Landfill collection networks manifest flow conditions unique both within the gas industry

and the field of hydraulics. Most industrial applications involving gas pipeline flow are

characterised by a fully compressible regime, whilst hydraulic networks usually conduct

incompressible fluid, whence the variation of temperature is of scarce interest. The flow

in a landfill network falls somewhere in between: the fluid is weakly compressible and the

flow cannot be solved without determination of the temperature variable. Moreover, this

particular type of network presents the additional complication of multiple source points

with streams of distinct chemical composition mixing at each node. Traditionally this

flow was approximated as incompressible for simplicity, albeit the mainstay complexity

did not stem from the choice of a head loss model. The current contribution sets forth

the theory that is conceptually consistent from the vantage point of fluid mechanics

and thermodynamics, and accounts for properties peculiar to this application, such as

differences in elevation between the network nodes and early onset of turbulence.

1.2. Classic Darcy-Weisbach equation

Historically Darcy-Weisbach equation was developed for steady incompressible flow upon

the underpinning of dimensional analysis combined with empirical measurements to

estimate the head loss |∆p| in a horizontal pipe of diameter d and length ℓ:

|∆p| = 1

2
ρu2f

ℓ

d
, (1)

wherein ρ denotes the fluid density, u is flow velocity, and f represents a dimensionless

friction coefficient as given by the Colebrook equation (Colebrook, 1939; White, 1999)

for a fully turbulent regime

1√
f

= −2 log10

(

ε

3.7
+

2.51

Re
√
f

)

(2)

and involving the relative surface roughness ε and Reynolds number Re, both based

on diameter d. Some remarks regarding (2) are in order. The salient moment of this

phenomenological approach is a realistic estimate of |∆p| owing to the inclusion of

interaction with a non-smooth surface through f , whilst Navier-Stokes flow equations

entail solely fluid properties. That f is a function of Re and ε can be obtained by

dimensional analysis, cf. Benedict (1980). Full turbulence in the current problem of

landfill networks is obtained somewhat earlier than the commonly concomitant with (2)

threshold of Re > 3000 (Moody, 1944), the reason being twofold: one, Moody’s diagram

is for flow in a single pipe with no geometric disturbances, whilst in the network the

pipes’ junctures engender turbulence; and two, the fluid comes into the network from

vertical wells, wherein flow rate measuring devices are installed, e.g. orifice plates,

rendering the flow turbulent even at very low Re numbers. Characteristic Re numbers
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in this application are 103 − 105. Equation (2) is implicit in
√
f and must be solved

numerically or equivalently through Lambert W function (Corless et al., 1996).

Forthright application to flows with inherent compressibility is impossible, however.

The current contribution is inspired by the unique flow regime occurring in gas collection

networks in landfills. Simplistically depicted, the landfill comprises an underground

organic mass, wherein anaerobic biodegradation takes place; a covering substratum with

an imbedded system of collection pipes; and an extraction facility. The biodegradation

of waste is exothermal, and the amount of gas generated is rarely uniform within the

landfill. The gas is conducted through a series of wells into the system of pipes, the

flow induced by suction created at the extraction facility. The landfill is not absolutely

impermeable to ambient air, but when the landfill pressure is properly monitored, there

is no exchange between the landfill and atmosphere. Two circumstances decide the

thermal regime: one, the pipe network is situated within the substratum sufficiently

far both from the landfill cavity, where the chemical reactions occur, and from the

surface; and two, the pipes are not insulated, allowing dissipation of friction generated

heat. A thermal equilibrium thus ensues within the substratum, midmost layers

thereof maintaining a constant temperature, virtually unaffected by seasonal changes.

Obviously, where the pipes are above ground, isothermal conditions are unlikely to

occur. Henceforth the flow within the collection network is taken isothermal. The

thermodynamic properties of the fluid render the assumption of ideal gas tenable,

forthwith imparting flow compressibility, as is seen from the state equation

p = ρRT, (3)

p denoting pressure, T – temperature and R – the gas constant, whereby pressure p and

density ρ must perforce vary proportionately since T and R are fixed.

Estimation of flow rates in the collection network is a basic step in landfill design,

whence a relation akin to (1) is of the essence. Surprisingly no adequate model is in use.

The sundry branches of the gas industry have developed empiric formulae galore, each

suitable to a particular flow regime and swiftly losing accuracy when applied elsewhere

(Menon, 2005). Some justification of the physical kernel of the aforesaid formulae can

be found in Coelho and Pinho (2007) and references therein. In addition to custom fit

exponents two features of import prevail: compressibility factor z < 1 and efficiency η,

or variants thereof. Introduction of the compressibility factor is equivalent to adoption

of a more general equation of state

p = zρRT, z 6 1, (4)

however here z < 1 will be incongruent with the regime of weak compressibility. The

multiplicative efficiency factor η is a crude attempt to account for natural phenomena

pertaining to head loss that elude properly grounded, yet pragmatic modelling. By

contrast, Darcy friction factor f manifests noteworthy generality through its continuous

dependence on physical parameters of both fluid and conduit, namely ε and Re.
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Changes in fluid density in the landfill collection network rarely are such as to render

the accuracy of (1) with a fixed value of ρ appalling. Characteristic Mach numbers range

below 0.1, therefore the flow is only weakly compressible. Nonetheless, application of

(1) is conceptually incorrect and entails significant error when pipe lengths are large.

In that light the current contribution generalises (1) for continuously varying density

ρ, yet preserves the valuable complexion of Darcy friction factor f . Affording accurate

estimates of head loss in landfill pipework is essential for determination of gas quantities

extracted, as will become apparent infra, and subsequent effectuation of sustainable

practices such as diversion of the gas for beneficial uses.

2. Continuous Darcy-Weisbach equation

Hereinafter integral mass and momentum equations are used to derive an ordinary

differential equation to supplant (1). The layout of landfill pipes follows local landscape,

therefore inclusion of gravity in the balance of momentum is imperative, as under low

flow conditions head loss or gain due to sloping terrain becomes non-negligible. Consider

a control volume of a straight pipe of length ℓ and radius r, inclined at angle α as in

figure 1. The flow is steady. Mass conservation equation reads (Batchelor, 1990)

∮

∂V

ρu · ds = 0, (5)

wherein ∂V is the surface of the control volume V , ρ is fluid density, u denotes velocity

vector and s – area vector with the normal directed outwards. Integration yields

ρinuin = ρoutuout (6)

with subscripts ( · )in and ( · )out referring to the respective cross-sections, and u = |u|
being the velocity magnitude. For consistence hereunder velocity and other quantities

inherently varying within the cross-section tacitly refer to equivalent uniform values.

Momentum conservation equation reads (Batchelor, 1990)

∫

∂V

u (ρu · ds) +
∫

∂V

p ds =

∫

V

ρ fbody dV + fsurf, (7)

wherein p is fluid pressure, fbody is the gravity vector, and the only surface force fsurf is

due to the shear stress τ within the boundary layer, via dimensional analysis given by a

friction coefficient cf and integration of dynamic pressure 1
2
ρu2 along the cylinder walls:

∣

∣fsurf
∣

∣ = πr

∫ ℓ

0

cfρu
2dx. (8)

Applying (7) in the axial direction yields

−ρinu
2
in + ρoutu

2
out − pin + pout =

g sinα

πr2

∫

V

ρ dV − 1

r

∫ ℓ

0

cfρu
2dx. (9)
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in
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Figure 1: Control volume schematic. Angle α is defined positive as shown, conforming to head gain due to gravity.

For incompressible flow, to wit density constant throughout ρin=ρout
def
= ρ and implying

velocity similarly constant uin=uout
def
= u, equation (9) becomes

pout − pin =

(

gℓ sinα− u2

r

∫ ℓ

0

cfdx

)

ρ, (10a)

recovering a gravity inclusive variant of (1)

pout − pin =

(

g sinα− 1

2
u2f

d

)

ρℓ (10b)

upon setting d = 2r and

1

ℓ

ℓ
∫

0

cfdx =
1

4
f. (10c)

In this sense the classic Darcy-Weisbach friction coefficient f is a multiple of the average

friction coefficient, or inversely, thenceforth the friction coefficient is regarded as an

effective average value that up to a multiplicative constant locally equals the Darcy-

Weisbach coefficient f .

To continue, suppose a generic equation of state, incorporating both (3) and (4)

as particular cases (even if z < 1, the thermodynamic properties of the fluid are not

expected to vary insofar as to render z a function of x),

ρ = F(p, T ), (11)

for isothermal flow giving together with (6)

uout

uin

=
ρin
ρout

=
F(pin, T )

F(pout, T )
. (12)
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Further combining with (6) and (9) gives

1− F(pin, T )

F(pout, T )
− pout − pin

ρinu2
in

=
1

ρinu2
in

(

1

r

∫ ℓ

0

cfρu
2dx− g sinα

πr2

∫

V

ρ dV

)

. (13)

To facilitate a continuous variation of ρ along the control volume, map the finite length

ℓ to infinitesimally small δℓ, whereby ρin 7−→ ρ, uin 7−→ u, pin 7−→ p, pout 7−→ p + δp,

ℓ 7−→ δℓ in (10c) and

F(pout, T ) ∼ F(pin, T ) +
dF

dp

∣

∣

∣

∣

∣

in

δp+O
(

δp2
)

. (14)

Then (13) becomes

δp

(

1

F

dF

dp
− 1

ρu2

)

=

(

f

4r
− g sinα

u2

)

δℓ (15)

upon completion of integrals and omission of higher order terms. At the limit the

following ordinary differential equation ensues

lim
δp−→0
δℓ−→0

δp

δℓ
=

dp

dℓ
=

(

f

4r
− g sinα

u2

)/(

1

F

dF

dp
− 1

ρu2

)

. (16)

Note that (16) was derived through integral mass and momentum conservation with a

generic equation of state and without making any assumptions regarding the variation of

the friction factor f . A less generic version can be found in classic literature, derived for

an ideal gas, horizontal flow (α = 0) and f gratuitously assumed constant throughout

(Benedict, 1983; Ward-Smith, 1980). The friction factor f depends on the Reynolds

number, thus introducing a dependence on the fluid viscosity, which is known to vary

with temperature. Hence implicitly (16) involves all properties sufficient to determine

the thermodynamic state of a substance and will require a specific equation of state for

solution.

The function F is readily identified as F = p/(zRT ), and (16) simplifies to

dp

dℓ
=

(

f

4r
− g sinα

u2

)/(

1

p
− 1

ρu2

)

. (17)

If the equivalence (10c) is premised, i.e. the constraint of Darcy-Weisbach relation

conforming solely to incompressible flow is relaxed ad hoc, equation (17) can be obtained

from the differential form of the mass and momentum conservation equations:

d(ρu) = 0 (18a)

u du+
dp

ρ
− g sinα dℓ+

f

4r
u2dℓ = 0. (18b)
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Before integration of (17) is attempted, it is necessary to determine how the friction

coefficient f varies. By (2) f is a function of ε, fixed for a given pipe, and Re, with the

expression of mass flow rate

ṁ = πr2ρu, (19)

to be written as

Re =
4ṁ

πµd
. (20)

The mass rate ṁ is constant by (6). The viscosity µ depends on temperature.§ Since

the flow is isothermal, µ is constant, whereby so are Re and f .

Recollecting (3) and using (19), for α 6= 0 equation (17) is forthwith cast into the

more elegant form
dp

dℓ
=

g sinα

RT

p(p2 − p2eq)

p2 − p2∞
, (21a)

wherein

p2eq =

(

ṁRT

2πr2

)2
f

gr sinα
, p∞ =

ṁ
√
RT

πr2
. (21b)

For α > 0, i.e. downward slope, the pressure peq entails a perfect balance of head gain

due to gravity and loss due to friction. For α < 0, i.e. upward slope, (21) possesses

no fixed points as p2eq < 0. The singular point p∞ corresponds to the subsonic velocity

u =
√
RT ‖ and has been obtained heretofore for horizontal geometry (Benedict, 1983).

In the current system this singular point is never approached, the flow being weakly

compressible with Mach number below 0.1 and 1.2 < γ < 1.25.

2.1. Solutions

Both forms (17) and (21) are separable and easily integrated. A simple familiar case is

that of ṁ = 0, whereby the integration is immediate, recovering the result for hydrostatic

pressure change

ln
pout
pin

=
gℓ sinα

RT
. (22)

For α = 0, i.e. horizontal flow, integration of (17) over a pipe of length ℓ gives

4r

f
ln

pout
pin

− 2π2r5

fṁ2RT

(

p2out − p2in

)

= ℓ, (23a)

§ Common models are Sutherland’s formula
µ

µo
=

(

T

To

)3/2
To + s

T + s
(Crane, 1982) or exponential law

µ

µo
=

(

T

To

)n

(White, 1999) with µo, To, s, n experimentally determined constants.

‖ For an adiabatic flow of ideal gas Mach number of unity is reached at u =
√
γRT with γ > 1 being

the ratio of heat capacities cp/cv.
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a transcendental equation that cannot be solved as is for an explicit expression akin to

(10). For α 6= 0 form (21) is preferable and upon integration yields ¶

p2∞
p2eq

ln
pout
pin

+
1

2

(

1− p2∞
p2eq

)

ln
p2out − p2eq
p2in − p2eq

=
gℓ sinα

RT
, (23b)

similarly insoluble for pout in closed form without further comparison of the various

quantities’ magnitude. Equations (23) pose no difficulty when solved numerically by

methods commonly used for non-linear equations.

To exemplify the differences effected by the continuous variation of density,

equations (23) and (10) were solved for two situations:

† downstream prediction: pin given, compute pout

(pout
pin

< 1 for horizontal flow
)

† upstream prediction: pout given, compute pin

( pin
pout

> 1 for horizontal flow
)

.

Albeit the former is the more commonly encountered case, the upstream prediction is

the inherently applicable case for the landfill networks, since the pressure maintained

at the extraction facility dictates the conditions up the stream. The magnitude of the

difference in head loss as predicted by the continuous model (23) versus the classic (10)

varies with the flow parameters. For a typical example see figure 2. The conceptual

disparity between (23) and (10) is summarily discernible: by (10) the density is constant

and pressure decreases linearly down the stream, whereas (23) imbeds a continuous

change of density through (3) and entails a non-linear diminution of pressure. When the

density is deemed constant and taken as the entry value, (10) overestimates the pressure

downstream (figure 2, left panel). Similarly, with an exit value (10) will overestimate the

pressure up the stream (figure 2, right panel). As expected, for small ℓ density changes

scarcely evolve, rendering the foregoing difference negligible. Over long distances the

changes due to compressibility are more pronounced. The continuous model (23) should

therefore be considered the correct one in the case of weakly compressible flow, where

usage of (10) is conceptually erroneous, albeit as a discrete approximation giving a close

estimate for sufficiently small ℓ.

3. Application to landfill gas collection network

The continuous Darcy-Weisbach equation (23) was used to solve the flow in a landfill

collection network. The foremost property that distinguishes this network from a

common hydraulic network is that each node serves as a source point of fluid with

distinct thermodynamic properties. The gas in each well flowing from the landfill cavity

upwards has its own composition that depends on the decay processes in that vicinity.

The stream of each well mixes with the gas incoming into the node by pipes collecting

gas from other parts of the network.

¶ The equilibrium solution pin = pout = peq for α > 0 does not require integration.



Flow solution in landfill networks 9

−54

−30

−6

0 5000

p
−
p a

tm
[k
P
a]

ℓ [m]

−6

42

89

137

0 5000
p
−

p a
tm

[k
P
a]

ℓ [m]

Figure 2: Comparison of head loss prediction with correct inclusion of compressibility effect (equation (23), thick
black curve) versus classic Darcy-Weisbach formula neglecting density changes (equation (10), thin grey line). Left
panel: downstream prediction (pin given, compute pout) results in overestimation of outlet pressure by (10) based
on fixed entry density. Right panel: upstream prediction (pout given, compute pin) results in overestimation of inlet
pressure by (10) based on fixed exit density. Parameters used: relative roughness ε = 10−5 (absolute roughness of
1.5×10−6m for plastic and drawn tubing, consult Crane (1982, A-23), and diameter as below), T = 13oC, molar fractions
{

xCH4
, xO2

, xCO2
, xN2

}

=
{

0.5, 0.01, 0.45, 0.04
}

, α = arctan(0.05), ṁ = 0.2kg/s, d = 0.15m, µ = 1.4 × 10−5Pa · s

(corresponding Re = 120, 000), reference pressure p = 6kPa below atmospheric (pin for left panel and pout for right
panel). All numeric values given up to two significant digits.

A generic solution to such a system is conceptually impossible without a given

network configuration. Hereunder the problem is posed for a general network with the

aid of fundamentals of graph theory, and a solution algorithm is developed. Thereafter

a solution is presented for a specific example of a network of sufficient difficulty

to be representative with the purpose to establish that implementation of (23) was

computationally feasible on par with the classic model (10).

The generic geometry of the system is as follows. The flow network is a graph with

n nodes corresponding to extraction wells and e edges representing collection pipes. An

example of typical complexity is given in figure 3. One of the nodes is designated as the

flare, where sub-atmospheric pressure is imposed, inducing flow from the wells that act as

sources for the network. Two parameters control the collection: suction strength at the

flare as dictated by considerations of efficiency, and a maximal permissible pressure (sub-

atmospheric) throughout the system as set by environmental and safety regulations+

(Conestoga-Rovers, 2010). The well flow rates are deemed known input.∗
To determine the flow rates in the collection pipes one is required to solve a system

+ Excessive pressure bespeaks insufficient gas extraction and is bound to beget leaks through the landfill

cavity boundary into the atmosphere.
∗ During landfill design phase well flow is estimated based on the amount and nature of refuse to

be buried at that locality. When fully operational, each well’s flow rate is measured. Certain field

conditions necessitate additional care to achieve adequate accuracy (Nec and Huculak, 2015).
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Figure 3: Example graph: vertices correspond to wells (numbered in diamonds), edges correspond to pipes (numbered in
circles). Flare is located at node #1, where sub-atmospheric pressure is imposed. The general collection progress is from
the remote wells toward the flare.

of non-linear equations. A network flow is governed by two principles: conservation of

mass at the nodes and continuity of pressure over any closed path. A graph of n nodes

and e edges contains e−n+1 fundamental cycles (Godsil and Royle, 2001), i.e. number

of independent closed paths, conforming to the number of pressure continuity equations

required. Perforce the number of independent mass conservation equations will be n−1.

Hence define Ji
in and Ji

out respectively as the sets of incoming and outgoing pipes at the

ith node. With ṁj denoting the flow rate through the jth pipe, mass conservation

equations read
∑

j∈Jiin

ṁj + ṁ(i) =
∑

j∈Jiout

ṁj, i = 1, . . . , n− 1, (24a)

wherein ṁ(i) is the mass flow rate input by the ith well. Construct the network’s incidence

matrix as follows (Godsil and Royle, 2001). The matrix is of size n × e. Each edge is

assigned an arbitrary flow direction. In each column, corresponding to an edge, entry

ij is set to equal (−1) if the flow in pipe j proceeds from node i, unity if the flow enters

node i, and zero otherwise. Each row is then used to determine the set Ji
in ∪ Ji

out and
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write (24a) in matrix form.

Define Jk
c as the set of pipes forming the kth fundamental cycle. With ∆pj being the

pressure drop over the jth pipe (sign determined by flow direction), pressure continuity

equations read
∑

j∈Jkc

∆pj = 0, k = 1, . . . , e− n+ 1. (24b)

The fundamental cycles are obtained by finding the null space of the incidence matrix

(Godsil and Royle, 2001). The dimension of that space gives the number of required

pressure continuity equations. The vectors spanning the space allow to write (24b) in

matrix form. Together (24a) and (24b) give a system of e equations in e unknown mass

flow rates
{

ṁj

}j=e

j=1
, with (24a) being linear, whereas (24b) are non-linear by (23). It

is possible to construct the incidence matrix conforming to an acyclic sub-graph of the

network, sized n × (n − 1), such that the inverse of a square block (n − 1) × (n − 1)

thereof, computed only once, enables the determination of n− 1 out of e unknowns via

(24a). Thence only the non-linear system (24b) in e− n+1 unknowns requires iterative

solution.

Solution of (24) is somewhat convoluted for the particular application of a landfill

network, because the gas differs in composition between the different wells. Simple

causality implies that properties of the mixture can be computed only in the downstream

direction, whereas head loss must be computed starting with the prescribed flare pressure

and proceeding upstream. Note that, identically to (10), both (23a) and (23b) accord the

determination of pout(pin) (downstream prediction) and pin(pout) (upstream prediction)

with equal ease. This attribute proves of import in the solution of (24b), since in a

network of that ilk well flow rates might fluctuate significantly over prolonged periods

of time as a cause of natural changes in chemical reactions within the landfill, bringing

about flow reversal in particular parts of the network, an occurrence all the more likely

when the terrain manifests elevation changes. In light of the above, when equation (23)

supplants (10) in the computation of pressure, the impact on the overall computational

complexity of (24) is peripheral.

3.1. Mixing

A further peculiarity of the landfill network is that each node is a conflux of streams

of different chemical compositions. With the depth of description accorded by the

integral mass and momentum conservation alone it is consistent to model the mixing

as instantaneous. The prevalent components are CH4, O2, CO2, N2. The molar

fractions of the mixture input by each well are measured and recorded as a quadruple
{

xCH4 , xO2 , xCO2 , xN2

}

. By definition

xCH4 + xO2 + xCO2 + xN2 = 1. (25)
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Upon completion of mixing at the ith node the molar fraction xY of component Y of

the mixture entering the set of outgoing pipes Ji
out is given by

xY =

(

∑

j∈Jiin

ṁjxYj + ṁ(i)x
(i)
Y

)/(

∑

j∈Jiin

ṁj + ṁ(i)

)

, (26)

wherein xYj and x
(i)
Y are the fractions in jth pipe and ith well respectively. The

verification that the newly obtained fractions sum to unity is immediate. Naturally

the computation of gas composition throughout the network is causal and must proceed

from the remotest well towards the flare. Given that the solution to the non-linear

system (24) is perforce iterative, the mixing is ineluctably performed at every iteration.

The gas constant R is then computed for each pipe

Rj = Ro

/

∑

Y

xYMY, j = 1, . . . , e (27)

with Ro being the universal gas constant, Y running over all components of the mixture

and MY denoting the corresponding molar weights.

3.2. Pressure distribution

The head loss across the network must be similarly computed at each iteration of the

numerical solution of (24). Starting at the flare, where a desired (design phase) or actual

(operational landfill) sub-atmospheric pressure is prescribed, the pressure is computed

sequentially upstream across the network with (23). Upon convergence the solution is

examined for compliance with the safety criteria. If the landfill is still under design, the

analysis determines where in the system the margin to maximal permissible pressure is

too small. Pipe geometry is consequently to be adjusted (larger diameter or additional

edges) until admissible margin is obtained. If the landfill is operational, when the

pressure limit is approached at any point in the network, the operator will adjust the

flow to the relevant wellheads, or if the problem appears to be of a more global nature,

modify the suction strength at the flare.

3.3. Example network

System (24) was solved with the underlying geometry of the network in figure 3.

The example features all properties pertinent to a landfill, rendering its generality

sufficient: (a) substantial number of nodes n = 23, edges e = 28 and fundamental

cycles e − n + 1 = 6; (b) exitence of isolated wells, namely Ji
in = ∅ for i = 15, 17; (c)

a node designated as flare, J1
out = ∅; (d) existence of crucial edges (j = 8, 15), whose

contingent disconnexion entails flow reversal in several parts of the network and possible

violation of the safety constraint delimiting the pressure to a maximal value throughout.

The following nominal real network geometry and landfill parameters were used:

80m 6
{

ℓj
}e

j=1
6 450m, 0.15m 6

{

dj
}e

j=1
6 0.2m, individual well volumetric flow
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up to 0.04m3/s, and gas composition with 0.45 6 x
(i)
CH4

6 0.55, 0 6 x
(i)
O2

6 0.02,

0.3 6 x
(i)
CO2

6 0.4, the fraction x
(i)
N2

in accord with (25), i = 1, . . . , n. The suction at the

flare was set to 6kPa < pflare < 25kPa below atmospheric pressure, a feasible range for

the landfill in question. One should bear in mind that the solution network is a model

of the real system, thus the dimensions do not directly conform to the field installation.

For instance, the pipe lengths are effective values adjusted to account for losses due

to various valves, fittings, condensate drain devices etc. Moreover, each node might

represent a cluster of wells. Being an unalienable part of landfill flow computation,

such equivalences, extraneous to the specific head loss equation employed, are based on

experience of the design and construction engineers. Hence the graph layout ought to

be regarded as a framework, where numerous real pipework detail has been absorbed

into effective dimensions. For this reason all values are given in precision of no more

than two significant digits.

With the foregoing base parameters an increase in the following quantities was

tested: (a) pipe length; (b) elevation difference between nodes (equivalent to increase in

incline angle |α|); (c) well input flow rate. It was found that formula (10) consistently

led to overestimation of pressure at the nodes. For clarity of exposition the effect is

illustrated for the higher values of extraction vacuum at the flare.

Figure 4 shows the variation of pressure within the system relatively to the flare

along a path from the flare at node 1, corresponding to the lowest pressure, to well

15, the remotest point and highest pressure in the network. Discernible changes of

slope occur at wells with significant mass input. The full potential of extraction is

achieved when the maximal pressure is only slightly below atmospheric, i.e. the fluid

at the remote nodes recovers most of the vacuum imposed at the flare. As exemplified

below, this is where the use of (23) instead of (10) can make a difference, mitigating the

conservative prediction by the latter approach.

The solution of (24) with the head loss correctly given by (23) was compared

with the case, where (23) was replaced by the discrete approximation (10), the

implementation thereof based on the fluid density at the exit of the pipe and kept

fixed (for the sake of comparison only, in congruence with (10), albeit erroneously in

the current application). Figure 5 shows the resulting overestimation of pressure by the

traditional approach (10). Sufficiently far from the flare this effect is nearly uniform.

Observe the non-linear dependence between extracted mass and said overestimation:

increasing the well input by a factor of 1.5 resulted in a fourfold prediction error,

whilst a doubled input incurred a tenfold error. With the maximal permissible pressure

commonly set slightly below atmospheric, e.g. 1250Pa, overestimation of up to 625Pa

is significant. Whilst design guidelines usually suggest node vacuum of about 5kPa as a

reasonable safety margin, in reality the operators strive to maintain the limit pressure

as close to atmospheric as possible, forbearing to exert unnecessary suction liable to

draw unsustainable amounts of landfill gas, beget air infiltration and decimation of

the microorganisms responsible for biodegradation. The limit pressure is not set in

stone and depends on the operator’s experience with the fluctuations observed in each
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Figure 4: Pressure relatively to the flare along the path formed by pipes 1 to 14 (figure 3) for a total collection of 0.2 kg/s
(dotted), 0.3 kg/s (dashed) and 0.4 kg/s (solid). Parameters used: flare node i = 1, pflare = 25kPa below atmospheric,

T = 13oC, molar fractions
{

xCH4
, xO2

, xCO2
, xN2

}

=
{

0.5, 0.01, 0.45, 0.04
}

.

locality. The extraction vacuum at the flare is usually significantly higher, although

that too might vary widely during the lifetime of a landfill, when for instance the cover

thickness or permeability is changed to accommodate addition of waste, landscaping

etc. The ultimate goal in controlling these parameters is to retain a productive colony

of anaerobic microorganisms.

From the vantage point of fluid mechanics the aforementioned findings are in

congruence with the essence of error introduced due to misapplication of (10), since

the computation is performed upstream from the flare (consult figure 2). Whilst the

result accords well with intuition, it falls far from triteness, as owing to the presence of

cycles in the network not every edge has the head change computed up the stream. In

fact the flow direction along each edge was determined automatically every iteration of

the solution. In a different application, where the reference pressure point is situated

upstream, or where several reference points exist, a result of a different nature might

ensue.

From the aspect of landfill design and operation the usage of (10) will result in more

conservative predictions than necessary. The main complexity of the numerical solution

of (24) and networks of this ilk stems from the non-linearity of pressure continuity

equations (24b) as well as the relative number of fundamental cycles and edges in the
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Figure 5: Variation between the classic and proposed methods: overestimation of pressure by the classic Darcy-
Weisbach model (equation (10), constant density) versus the continuous model (equation (23), correctly varying density)
along the path formed by pipes 1 to 14 (figure 3) for a total collection 0.2 kg/s (dotted), 0.3 kg/s (dashed) and
0.4 kg/s (solid). Parameters used: flare node i = 1, pflare = 25kPa below atmospheric, T = 13oC, molar fractions
{

xCH4
, xO2

, xCO2
, xN2

}

=
{

0.5, 0.01, 0.45, 0.04
}

. For reference, maximal permissible pressure is commonly set slightly

below atmospheric, e.g. 1250Pa.

graph. In practice the replacement of (10) with the more complicated at first glance (23)

encumbers the solution but little (observe that a numerical solution of (2), for instance,

and (23) demands the selfsame computational tools), however brings forth the advantage

of a more accurate estimate. In particular, in order to direct the collected gas to

beneficial uses the landfill operator is under an obligation to supply designated amounts

of gas. As the maintained flow regime must comply with the maximal permissible

pressure limit, overestimated pressure values will result in superfluous restrictions on

the amount of gas extracted, undermining optimal collection and efficiency of the entire

facility.

Figure 6 depicts the variation of Mach number along the same path as in figures 4

and 5. In this example, as in the vast majority of cases, the flare node would give the

upper bound for the entire network. As expected, the Mach number is very low and

nearly uniform in the part of the network containing interconnected cycles, climbing to

the upper bound only in the acyclic part leading to the flare.
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Figure 6: Mach number along the path formed by pipes 1 to 14 (figure 3) for a total collection of 0.2 kg/s (dotted),
0.3 kg/s (dashed) and 0.4 kg/s (solid). Parameters used: flare node i = 1, pflare = 25kPa below atmospheric, T = 13oC,

molar fractions
{

xCH4
, xO2

, xCO2
, xN2

}

=
{

0.5, 0.01, 0.45, 0.04
}

.

3.4. Kinked pipes

In landfill construction the occurrence of a pipe being kinked in the course of imbedment

within the substratum covering the refuse cavity is a contingency to contend with.

Mathematically a kinked pipe translates into elimination of the corresponding graph

edge. Depending on the location, this modification might precipitate momentous

changes for the entire network, possibly begetting flow reversal and flow rates manyfold

larger than initially expected. One must bear in mind that when heavy construction

machinery riding over the substratum damages a pipe laid within, the likelihood of

repairs being effectuated is minuscule, rendering the resultant arrangement a permanent

working regime. A gratuitously restrictive prediction of pressure distribution in the

reconfigured system due to misapplication of (10) instead of (23) will necessitate an

operator induced flow reduction at the wells in adherence to the limit of maximal

permissible pressure in the system. Even small changes in the total flow rate annually

amount to significant quantities of gas that might make a difference between the

feasibility of a profitable alternative fuel or methane content enhancement facility, and

the environmentally detrimental destruction by flaring with no useful work.
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4. Discussion

A problem of flow in landfill gas collection network was considered. The fluid is

an ideal gas and the regime isothermal, thereby the flow is weakly compressible.

The traditional Darcy-Weisbach formula (1) developed for incompressible flows, whilst

providing a close estimate in a certain part of the parameter space, is conceptually

erroneous, the use thereof in conjunction with the state equation of ideal gas (3) setting

forth an inherent incongruence. On the other hand, related formulae in wide use in

the gas pipeline industry take into account compressibility effects insofar as to have

recourse to multifarious empiric loss coefficients. The suggested method generalises the

classic Darcy-Weisbach formula to include a continuous variation of density, yielding an

ordinary differential equation. The approach is based on integral mass and momentum

conservation equations, thence the result is obtained without undue premise on the

constancy of the Darcy friction coefficient.

In the case of ideal gas the differential equation is soluble in closed form comprising

non-linear algebraic equations (23), separate for the instances of horizontal and non-

horizontal flow. The equation involves the traditional Darcy friction factor. Its use was

justified by establishing an equivalence between a generic friction factor in the integral

momentum conservation equation and empirically sound as well as easily accessible in

practice Darcy friction factor. Any numerical algorithm suitable for solution of the

Colebrook equation (2) to obtain f is equally capable of solving (23).

The network was characterised by an incidence matrix, permitting to implement

the mass conservation equations at the nodes and pressure continuity equations in

matrix form. The feasibility of (23) supplanting (10) was confirmed by solution of a

flow in network geometry from a real landfill in the process of redesign and expansion.

It was seen that little additional computational complexity arose due to the change

of the head loss model, whereby it follows that the misapplication of the classic

Darcy-Weisbach formula (10) for isothermal, compressible flow cannot be justified by

the simplicity thereof. The solution stemming from the continuous approach herein

properly accounts for compressibility, whose effect is non-negligible over significant pipe

lengths. Furthermore, beyond the conceptually erroneous complexion of (10) in the

context of isothermal gas flow, twofold pragmatic implications ensue. First, from the

aspect of landfill operation the error in the estimation of pressure distribution in the

network entails consistently more conservative working regime with reduced flow rates.

Application of the conceptually correct (23) permits utilising the safety limits to their

full potential. Second, extraction of all available gas and accurate estimate of the mass

thereof allows for planning of environmentally more beneficial alternatives than flaring.

In summary, for a weakly compressible isothermal flow the Darcy-Weisbach formula

is inapplicable. With the correct, although more involved, non-linear equation, within

the context of pipe network analysis the additional computational complexity is minor.

The suggested approach enables more accurate engineering decision making as regards

efficient landfill operation and optimisation of gas collection.
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pipe diameter length

dj [m] ℓj [m]

1 0.15 200

2 0.15 200

3 0.15 300

4 0.2 300

5 0.2 175

6 0.2 150

7 0.2 80

8 0.2 350

9 0.2 120

10 0.2 330

11 0.2 200

12 0.2 180

13 0.2 450

14 0.2 300

16 0.2 220

16 0.2 100

17 0.15 200

18 0.15 150

19 0.15 150

20 0.15 150

21 0.15 210

22 0.15 160

23 0.15 200

24 0.15 185

25 0.15 185

26 0.15 80

27 0.15 185

28 0.15 180

node elevation flow rate

hi [m] ṁ(i) [kg/s]

1 10 0

2 10 0.005

3 10 0.007

4 10 0.012

5 10 0.002

6 10 0.007

7 10 0.02

8 10 0.02

9 15 0.016

10 15 0.005

11 15 0.005

12 12 0.005

13 15 0.005

14 8 0.01

15 15 0.007

16 12 0.01

17 12 0.01

18 15 0.01

19 15 0.01

20 15 0.01

21 15 0.005

22 15 0.005

23 15 0.01

Table A1: Network details for the example in figure 3. Pipe data (left): internal pipe diameter dj and effective pipe

length ℓj , j = {1, . . . , 28}. Node data (right): elevation hi and input mass flow ṁ(i), i = {1, . . . , 23}.

Appendix A. Example network details

Table A1 lists the pipe and node data used for the example network given in figure 3.
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