
European Journal of Applied Mathematics
http://journals.cambridge.org/EJM

Additional services for European Journal of Applied 
Mathematics:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

The stability of localized spikes for the 1­D Brusselator 
reaction–diffusion model

J. C. TZOU, Y. NEC and M. J WARD

European Journal of Applied Mathematics / Volume 24 / Issue 04 / August 2013, pp 515 ­ 564
DOI: 10.1017/S0956792513000089, Published online: 10 April 2013

Link to this article: http://journals.cambridge.org/abstract_S0956792513000089

How to cite this article:
J. C. TZOU, Y. NEC and M. J WARD (2013). The stability of localized spikes for the 1­D 
Brusselator reaction–diffusion model. European Journal of Applied Mathematics, 24, pp 515­564 
doi:10.1017/S0956792513000089

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/EJM, IP address: 138.73.29.232 on 03 Jul 2013



Euro. Jnl of Applied Mathematics (2013), vol. 24, pp. 515–564. c© Cambridge University Press 2013

doi:10.1017/S0956792513000089
515

The stability of localized spikes for the 1-D
Brusselator reaction–diffusion model

J. C. TZOU1, Y. NEC2 and M. J. WARD2

1Department of Engineering Sciences and Applied Mathematics, Northwestern University,

2145 Sheridan Road, Evanston, IL 60208-3125, USA

email : tzou.justin@gmail.com
2Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada

emails: cranberryana@gmail.com, ward@math.ubc.ca

(Received 23 January 2012; revised 28 February 2013; accepted 1 March 2013;

first published online 10 April 2013)

In a one-dimensional domain, the stability of localized spike patterns is analysed for two

closely related singularly perturbed reaction–diffusion (RD) systems with Brusselator kinetics.

For the first system, where there is no influx of the inhibitor on the domain boundary,

asymptotic analysis is used to derive a non-local eigenvalue problem (NLEP), whose spectrum

determines the linear stability of a multi-spike steady-state solution. Similar to previous NLEP

stability analyses of spike patterns for other RD systems, such as the Gierer–Meinhardt and

Gray–Scott models, a multi-spike steady-state solution can become unstable to either a

competition or an oscillatory instability depending on the parameter regime. An explicit

result for the threshold value for the initiation of a competition instability, which triggers

the annihilation of spikes in a multi-spike pattern, is derived. Alternatively, in the parameter

regime when a Hopf bifurcation occurs, it is shown from a numerical study of the NLEP that

an asynchronous, rather than synchronous, oscillatory instability of the spike amplitudes can

be the dominant instability. The existence of robust asynchronous temporal oscillations of the

spike amplitudes has not been predicted from NLEP stability studies of other RD systems.

For the second system, where there is an influx of inhibitor from the domain boundaries,

an NLEP stability analysis of a quasi-steady-state two-spike pattern reveals the possibility

of dynamic bifurcations leading to either a competition or an oscillatory instability of the

spike amplitudes depending on the parameter regime. It is shown that the novel asynchronous

oscillatory instability mode can again be the dominant instability. For both Brusselator

systems, the detailed stability results from NLEP theory are confirmed by rather extensive

numerical computations of the full partial differential equations system.

Key words: Brusselator; Singular perturbations; Quasi-equilibria; Non-local eigenvalue prob-

lem; Hopf bifurcation; Asynchronous oscillatory instability; Dynamically triggered instability

1 Introduction

Spatially localized patterns arise from a wide variety of reaction–diffusion (RD) systems,

with applications to chemical dynamics and biological modelling (cf. [29]), the spatial dis-

tribution of urban crime (cf. [14,24]), electronic gas-discharge systems (cf. [23]) and many

other areas. In particular, it is now well-known that localized spot patterns can exhibit a

wide range of different instabilities, including spot oscillation, spot annihilation and spot
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self-replication behaviour. Various topics related to the analysis of far-from-equilibrium

patterns modelled by partial differential equation (PDE) systems are discussed in [19]

and [11].

In this broad context, in this paper we study the stability of localized spike-type solutions

to two closely related RD systems with Brusselator-type kinetics. The Brusselator system

(see, e.g. [18, 20 or 28] and the references therein) is a well-known theoretical model

for a simplified autocatalytic reaction. It describes the space–time dependence of the

concentrations of the intermediate products U (the activator) and V (the inhibitor) in the

sequence of reactions

E → U , B +U → V + P , 2U + V → 3U , U → Q . (1.1)

Assuming (without loss of generality) that all rate constants of the reactions in (1.1)

are unity, the conventional dimensionless Brusselator model in a one-dimensional do-

main, with slow diffusion of the activator and constant influx of the inhibitor from the

boundaries, can be written as

Ut = ε20Uxx + E0 − (B0 + 1)U + VU2 , −1 < x < 1 , Ux(±1, t) = 0 , t > 0 , (1.2a)

Vt = D0Vxx + B0U − VU2 , −1 < x < 1 , Vx(±1, t) = ±A0 , t > 0 , (1.2b)

supplemented by appropriate initial conditions. Here U � 0, V � 0, 0 < ε0 � 1, and A0,

B0, D0 and E0 are all non-negative constants. The constant A0 represents a boundary

feed term for the inhibitor, while the constant E0 represents a constant bulk feed for the

activator. Our key assumption in the model is that there is an asymptotically large ratio

of the diffusivities for U and V .

In the absence of a boundary feed-term so that A0 = 0 in (1.2b), spikes for (1.2) occur

when E0 = O(ε
1/2
0 ) (see Appendix and [27]). Upon writing E0 = ε

1/2
0 E0, where E0 = O(1),

the scaling analysis in Appendix yields

ut = ε2uxx + ε− u+ fvu2 , −1 < x < 1 , ux(±1, t) = 0 , t > 0 , (1.3a)

τvt = Dvxx +
1

ε

(
u− vu2

)
, −1 < x < 1 , vx(±1, t) = 0 , t > 0 , (1.3b)

where t is a different time-scale than in (1.2). Here D, τ, ε and f are defined by

D ≡ D0(B0 + 1)3/2

E2
0

, τ ≡ (B0 + 1)5/2

E2
0

, ε ≡ ε0√
B0 + 1

, f ≡ B0

B0 + 1
. (1.4)

In contrast, when both the boundary and bulk feed terms are non-vanishing, and are

asymptotically small of the order O(ε
1/2
0 ) so that E0 = ε

1/2
0 E0 and A0 = ε

1/2
0 A0, where E0

and A0 are O(1), then the appropriate re-scaled form of (1.2) is (see Appendix)

ut = ε2uxx + εE − u+ fvu2 , −1 < x < 1 , ux(±1, t) = 0 , t > 0 , (1.5a)

τvt = Dvxx +
1

ε

(
u− vu2

)
, −1 < x < 1 , vx(±1, t) = ±1 , t > 0 , (1.5b)
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where D, E, τ, ε and f are now defined as

D≡ D0A
2
0

√
B0 + 1

B2
0

, E ≡ E0A0

B0

√
B0 + 1

, τ ≡ A2
0(B0 + 1)3/2

B2
0

, ε ≡ ε0√
B0 + 1

,

f ≡ B0

B0 + 1
. (1.6)

The spatially uniform steady-state solution of (1.3) is ue = ε/(1 − f) and ve = ε−1(1−f).
For arbitrary ε > 0, it is well known that this solution undergoes either a Turing or Hopf

instability depending on the parameter ranges in (1.3) (cf. [18]). Near the bifurcation

points for the onset of these instabilities, small-amplitude patterns emerge and they have

been well studied in a multi-spatial dimensional context through canonical amplitude

equations that are readily derived from a multi-scale weakly nonlinear analysis (see [20]

and the references therein). For a detailed survey of normal form theory as applied to

the study of one-dimensional pattern formation in the Brusselator model see [36]. More

recently, a weakly nonlinear analysis was used in [26] to study pattern formation near the

Turing–Hopf bifurcation in a Brusselator model with superdiffusion.

In contrast, with an asymptotically large diffusivity ratio as in (1.3), localized large-

amplitude patterns are readily observed in full numerical simulations of (1.3) with initial

conditions close to the spatially uniform state (ue, ve). A standard calculation shows that

for f > 1/2, 0 < ε � 1 and τ = o(1), the band of unstable wave numbers m for an

instability mode of the form (u, v) = (ue, ve) + eλt+imx(Φ,N) satisfies

ε1/2 [(2f − 1)(1 − f)D]−1/2 < m <
(2f − 1)1/2

ε
, as ε → 0 . (1.7)

The maximum growth rate within this instability band is calculated as λmax ∼ (2f − 1) −
2ε2m2, which occurs when m = mmax, where

mmax ∼
(

f

D(f − 1)2

)1/4

ε−1/4 , as ε → 0 . (1.8)

Therefore, the instability has a short wavelength of O(ε1/4). In contrast, our results (see

(1.9) and (1.10)) show that stable localized spikes occur only at O(1) inter-spike separation

distances. This suggests that starting from initial data a coarsening process must occur,

which eventually leads to localized spikes. For a particular parameter set, in Figure 1 we

show the formation of a two-spike pattern as obtained from the numerical solution of

(1.3).

Rigorous results for the existence of large amplitude equilibrium solutions for some

generalizations of the Brusselator model (1.3) in the non-singular perturbation limit ε = 1

have recently been obtained in [21] and [22] (see also the references therein). However, to

date, there is no comprehensive stability theory for these large amplitude solutions.

In a more general one-dimensional context, there are now many results for the existence

and stability of localized equilibrium spike patterns for various singularly perturbed two-

component RD systems such as the Gierer–Meinhardt (GM) model [5, 9, 32, 34], the

Gray–Scott (GS) model [1, 4, 12, 16, 17] and the Schnakenberg model [10, 31]. An explicit

characterization of the slow dynamics of spike patterns, and their instability mechanisms,
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Figure 1. Plot of numerical solution u of (1.3) at different times for the parameter set ε = 0.02,

f = 0.8, D = 0.1 and τ = 0.001, with initial condition u(x, 0) = ue(1 + 0.02 × rand) and v(x, 0) =

ve(1+0.02 × rand), where ue = ε/(1 − f), ve = ε−1(1 − f) and rand is a uniformly generated random

number in [0, 1]. Left: the small amplitude pattern at t = 18 leads to the two-spike pattern shown

at t = 46. Right: As t increases from t = 193 to 837, the two spikes slowly drift to their equilibrium

locations at x = ±0.5.

is given in [2,3,6–8,25] for various RD systems in one dimension. A central feature in all

of these previous studies is that the determination of the spectrum of various classes of

non-local eigenvalue problems (NLEPs) is critical for characterizing the stability of both

equilibrium and quasi-equilibrium multi-spike patterns. A survey of the NLEP theory is

given in [35].

The goal of this paper is to provide a detailed analysis of the stability of multi-spike

equilibria of (1.3), and a detailed study of the dynamics and stability of two-spike solutions

for the Brusselator model (1.5) with a non-zero boundary feed term. Although much of

the general theoretical framework for the spike-stability analysis is closely related to

that developed in previous works for GM, GS and Schnakenberg RD systems, there are

important differences both in the details of the analysis required and in the stability results

that are obtained. The stability results obtained herein complement the results obtained

in the companion paper [27] for the dynamics of spikes in the Brusselator model.

We now summarize our main results. In Section 2.1 we begin by briefly outlining the

asymptotic construction of symmetric N-spike equilibrium solutions to (1.3). We refer

to a symmetric N-spike solution as one for which the spikes are equally spaced and,

correspondingly, each spike has the same amplitude. The main focus of Section 2, not

considered in [27], is to analyse the stability of symmetric N-spike equilibrium solutions

to (1.3). A singular perturbation analysis is used in Section 2.2 to derive an NLEP that

determines the stability of this solution to O(1) time-scale instabilities. The derivation of

this NLEP is rather more intricate than for related RD systems in [4,5,9,10,12,17,31,32]

owing primarily to the presence of two separate non-local terms resulting from the O(ε−1)

coefficient in (1.3b), and secondarily from the non-trivial background state for the activator

resulting from the constant feed term of order O(ε) in (1.3a). From an analysis of this

NLEP there are two distinct mechanisms through which the solution can go unstable as

the bifurcation parameters τ and D are varied.
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Firstly, for τ sufficiently small, our analysis of the NLEP in Section 2.3 reveals the

existence of a critical threshold Nc+ such that a pattern consisting of N spikes with N > 1

is unstable to a competition instability if and only if N > Nc+. This instability, which

develops on an O(1) time-scale as ε → 0, is due to a positive real eigenvalue, and it triggers

the collapse of some of the spikes in the overall pattern. This critical threshold Nc+ > 0

is the unique root of (see Principal Results 2.3 and 2.4)

N
(
1 + cos

(
π/N

))1/3
=

(
2f2

3(1 − f)D

)1/3

. (1.9)

In addition, from the location of the bifurcation point associated with the birth of an

asymmetric N-spike equilibrium solution, a further threshold Nc− is derived that predicts

that an N-spike equilibrium solution with N > 1 is stable with respect to slow translational

instabilities of the spike locations if and only if N < Nc−, where (see (2.47))

Nc− =

(
2f2

3(1 − f)D

)1/3

. (1.10)

Since Nc− < Nc+, the stability properties of an N-spike equilibrium solution to (1.3) with

N > 1 and τ sufficiently small are as follows: stability when N < Nc−; stability with

respect to fast O(1) time-scale instabilities but unstable with respect to slow translation

instabilities when Nc− < N < Nc+; a fast O(1) time-scale instability dominates when

N > Nc+. We remark that for (1.3) posed on a domain of length L, by a scaling argument

we need only replace D in (1.9) and (1.10) with 4D/L2. As an example, consider the

parameter set ε = 0.02, f = 0.8 and τ = 0.001 � 1. Then the threshold (1.10) with

Nc− = 2 predicts that a two-spike pattern is stable to both fast and slow instabilities when

D < 0.133. The numerical results shown in Figure 1 with D = 0.1 confirm this prediction.

For the case τ > 0 in (1.3), we show that an N-spike equilibrium solution to (1.3) is

unstable when N > Nc+, or equivalently when D > DcN (see Principal Result 2.3), where

DcN ≡ 2f2

3N3(1 − f)
(
1 + cos π

N

) .
For D < DcN , in Section 2.4 we show from a numerical computation of the spectrum

of the NLEP that there is a critical value τH of τ for which an N-spike equilibrium

solution undergoes a Hopf bifurcation. In contrast to the previous NLEP stability studies

of [12, 30, 32] for the GM and GS models, where a synchronous oscillation in the spike

amplitudes was always the dominant instability, our results show that there is a parameter

regime where the Hopf bifurcation for the Brusselator (1.3) triggers robust asynchronous

temporal oscillations of spike amplitudes. Furthermore, we establish the scaling law

τH ∼ c/D as D → 0 for some O(1) constant c > 0. Therefore, in contrast to the previous

analyses for the GM and GS models (cf. [12, 32]) where τH = O(1) as D → 0, this new

scaling law indicates that spikes that are isolated from their neighbours or from the

domain boundaries (i.e. D small) do not undergo an oscillatory instability unless τ is very

large.
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For the boundary-flux system (1.5), in Section 3.1 we derive an Ordinary Differential

Equation (ODE) for the slow evolution of a two-spike quasi-steady pattern. In the

presence of boundary flux, equilibrium spikes are not equally spaced, and depending on

the parameter values, slowly drifting spikes may annihilate against the domain boundaries.

In Section 3.2 we derive an NLEP governing the stability of the two-spike quasi-steady

pattern to O(1) time-scale instabilities. From an analytical and numerical study of this

NLEP, in Sections 3.3 and 3.4 we show the possibility of dynamic bifurcations leading

to either a competition or an oscillatory instability of spike amplitudes depending on the

parameter regime. As in the study of the no-flux system (1.3), the novel asynchronous

oscillatory instability mode can again be the dominant instability.

For both Brusselator systems, the detailed stability results are confirmed and illustrated

by rather extensive numerical computations of the full PDE systems.

2 Stability of symmetric N-spike equilibria with no boundary flux

In this section, we construct N-spike symmetric equilibrium solutions of (1.3). By a

symmetric spike solution we refer to a pattern of spikes with a common height and equal

spacing. We then linearize about this equilibrium solution to derive an NLEP governing

the stability of the equilibrium pattern to O(1) eigenvalues. Stability with respect to the

small O(ε2) eigenvalues as well as the existence of asymmetric equilibria were studied

in [27]. We highlight the differences between the NLEP derived here and analogous

NLEPs derived for the GS ( [12]) and GM ( [32]) models. We also draw similarities to the

aforementioned NLEPs and appeal to results of [32] to determine criteria for competition

and oscillatory instabilities. Numerical results computed from (1.3) are used to validate

our stability results.

2.1 Asymptotic construction of N-spike equilibria

To construct an N-spike symmetric equilibrium solution, characterized by spikes of a

common amplitude and equal spacing, we employ the ‘gluing’ technique used in [31].

We first consider a one-spike solution on the interval |x| < � centred at x = 0. In the

inner region of width O(ε), we introduce the stretched spatial variable y = ε−1x and let

U(y) = u(εy). Because v varies on an O(1) length scale, v ∼ vc in the inner region where

the constant vc is to be found. Then, by (1.3a), we obtain to leading order that U satisfies

Uyy −U + fvcU
2 = 0. The spike solution to this problem is

U(y) =
1

fvc
w(y), (2.1)

where w = 3
2
sech2(y/2) is the homoclinic solution to

w′′ − w + w2 = 0 , −∞ < y < ∞ , w → 0 as |y| → ∞ , w′(0) = 0, w(0) > 0 , (2.2)

for which ∫ ∞

−∞
w dy =

∫ ∞

−∞
w2 dy = 6. (2.3)
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In the outer region, we obtain from (1.3a) that u = O(ε) so that vu2 � u. Thus, u ∼ ε

to leading order in the outer region. The resulting leading-order composite solution for u

is then given by

u ∼ ε+
1

fvc
w(x/ε) , (2.4)

where w(y) is defined by (2.2). Since u is localized near x = 0, the terms involving u in

(1.3b) can be represented in the outer region as delta functions. Upon using (2.3) and

(2.4) we calculate that

1

ε
(u− vu2) ∼ 1 +

(
1

fvc

∫ ∞

−∞
w dy − 1

f2vc

∫ ∞

−∞
w2 dy

)
δ(x) = 1 +

6

fvc

(
1 − 1

f

)
δ(x) . (2.5)

Therefore, in the outer region we obtain for ε → 0 that v satisfies

Dvxx + 1 =
6

fvc

(
1

f
− 1

)
δ(x) , −� < x < � , vx(±�) = 0 . (2.6)

Integrating this equation over |x| � � and imposing that vx = 0 at x = ±�, we obtain

vc =
3

f�

(
1

f
− 1

)
> 0 , (2.7)

since f satisfies 0 < f < 1. To obtain an N-spike equilibrium solution for (1.3) on the

domain of length two, we must set 2 = 2N� and periodically extend our solution on

|x| < l to [−1, 1]. Thus, we identify that l = 1/N and (2.7) becomes

vc =
3N

f

(
1

f
− 1

)
. (2.8)

Before solving for the outer solution for v, we make some remarks. Firstly, vc in (2.8)

increases with N, and so, by (2.1), the common spike amplitude decreases as the number

of spikes increases. Also, the common amplitude is independent of D, which will not be

the case when we construct spike solutions in the presence of boundary flux in Section 3.

Secondly, by using � = 1/N, the centre of each spike is located at

xj = −1 +
2j + 1

N
, j = 0, . . . , N − 1 . (2.9)

This equally spaced spike result will be shown not to hold in Section 3 when we allow for

the presence of boundary flux. Lastly, the uniqueness of the solution to (2.6) is achieved

by imposing the matching condition v(xj) = vc.

Using the last remark, we write the equation for v on the interval −1 < x < 1 as

Dvxx + 1 =
6

fvc

(
1

f
− 1

) N−1∑
j=0

δ(x− xj) , −1 < x < 1 , vx(±1) = 0 , (2.10)

where vc satisfies (2.8). The solution to (2.10) can be written in terms of the Neumann
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Green’s function G(x; xj) as

v = v̄ +
6

fvc

(
1

f
− 1

) N−1∑
j=0

G(x; xj) (2.11)

for some constant v̄ to be determined. Here G(x; xj) satisfies

DGxx(x; xj) +
1

2
= δ(x− xj) , −1 < x < 1 ; Gx(±1; xj) = 0 ,

∫ 1

−1

G(x; xj) dx = 0 ,

(2.12)

which has the explicit solution

G(x; xj) = − 1

4D
(x2 + x2

j ) +
1

2D
|x− xj | − 1

6D
. (2.13)

The constant v̄ is determined by the matching condition v(xi) = vc, yielding

v̄ = vc − 6

fvc

(
1

f
− 1

) N−1∑
j=0

G(xi; xj) , (2.14)

where the right-hand side of (2.14) is readily shown to be independent of i. We summarize

our result as follows.

Principal Result 2.1 Let ε → 0 in (1.3). Then the leading-order composite approximation

for the symmetric N-spike equilibrium solution for u is

ue(x) ∼ ε+
1

fvc

N−1∑
j=0

w[ε−1(x− xj)] . (2.15a)

Alternatively, the outer solution for v valid for |x−xj | 
 O(ε) and j = 0, . . . , N− 1 is given

asymptotically by

ve(x) ∼ v̄ +
6

fvc

(
1

f
− 1

) N−1∑
j=0

G(x; xj) . (2.15b)

Here w(y) satisfies (2.2), while vc, xj , v̄ and G(x; xj) are given in (2.8), (2.9), (2.14) and

(2.13), respectively.

Next, we calculate the critical value DsN of D for which an asymmetric N-spike

equilibrium solution, characterized by spikes of different heights and non-uniform spacing,

bifurcates from the symmetric N-spike symmetric solution branch. This bifurcation point

corresponds to a zero eigenvalue crossing along the symmetric branch, and for τ sufficiently

small, it characterizes the stability threshold of symmetric N-spike equilibria with respect

to the small eigenvalues with λ → 0 as ε → 0 in the linearization of (1.3) (cf. [27]).
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To determine this bifurcation point, we compute v(l) for the one-spike equilibrium

solution to (1.3) on the domain −l < x < l. From (2.6) and (2.7), we readily calculate that

v(l) =
1

2D

(
l2 +

b

l

)
, b ≡ 6D

f2
(1 − f) .

The bifurcation point for the emergence of an asymmetric N-spike solution on a domain

of length two is obtained by calculating the minimum point of the graph of v(l) versus l,

and then setting 2Nl = 2 (cf. [27]). This occurs at the value D = DsN , where

DsN ≡ f2

3(1 − f)N3
. (2.16)

2.2 Derivation of non-local eigenvalue problem

To analyse the stability of the equilibrium solution constructed above, we linearize about

ue and ve, where ue and ve are given in (2.15a) and (2.15b), respectively. We substitute

u = ue + eλtΦ and v = ve + eλtΨ into (1.3), where |Φ| � 1 and |Ψ | � 1. This leads to the

eigenvalue problem

ε2Φxx − Φ+ 2fueveΦ+ fu2
eΨ = λΦ , −1 < x < 1 , Φx(±1) = 0 , (2.17a)

DΨxx +
1

ε

[
Φ− 2ueveΦ− u2

eΨ
]

= τλΨ , −1 < x < 1 , Ψx(±1) = 0 . (2.17b)

To analyse the large eigenvalues that are O(1) as ε → 0, we look for a localized

eigenfunction for Φ of the form

Φ ∼
N−1∑
j=0

Φj[ε
−1(x− xj)] , (2.18)

with Φj → 0 exponentially as |y| → ∞. In the inner region near the jth spike we obtain

from (2.17b) that Ψ ∼ Ψj , where Ψj is a constant to be found. Since both ue and Φ are

localized near each xj , we calculate in the sense of distributions that

1

ε

[
Φ− 2ueveΦ− u2

eΨ
]

∼
(∫ ∞

−∞
Φj dy − 2

f

∫ ∞

−∞
wΦj dy − Ψj

f2v2c

∫ ∞

−∞
w2 dy

)
δ(x−xj). (2.19)

Substituting (2.18) into (2.17a) and (2.19) into (2.17b), and using (2.3) for the last integral

in (2.19), we obtain that

Φ′′
j − Φj + 2wΦj +

1

fv2c
w2Ψj = λΦj , −∞ < y < ∞ , Φj → 0 as |y| → ∞ , (2.20a)

and

Ψxx − μ2Ψ = −
N−1∑
j=0

ω̃jδ(x− xj) , −1 < x < 1 , Ψx(±1) = 0 , (2.20b)
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where we have defined μ and ω̃j by

μ ≡
√
τλ

D
, ω̃j ≡ 1

D

[∫ ∞

−∞
Φj dy − 2

f

∫ ∞

−∞
wΦj dy − 6Ψj

f2v2c

]
. (2.21)

To derive an NLEP for Φj , we must compute Ψj for j = 0, . . . , N − 1 from (2.20b). To do

so, we write Ψ (x) as

Ψ =

N−1∑
j=0

G(μ)(x; xj)ω̃j , (2.22)

where G(μ)(x; xj) is the Neumann Green’s function satisfying

G(μ)
xx − μ2G(μ) = −δ(x− xj) , −1 < x < 1 ; G(μ)

x (±1; xj) = 0 . (2.23)

Evaluating (2.22) at x = xi, we obtain that Ψ (xi) = Ψi =
∑N−1

j=0 G
(μ)
i,j ω̃j , where G(μ)

i,j ≡
G(μ)(xi, xj) and ω̃j is given in (2.21). In matrix form, this system can be written as

Ψ = G(μ)

(
ω − 6

f2v2cD
Ψ

)
, (2.24)

where

Ψ ≡

⎛
⎜⎝

Ψ0

...

ΨN−1

⎞
⎟⎠ , G(μ) ≡

⎛
⎜⎜⎜⎜⎜⎝

G
(μ)
0,0 G

(μ)
0,1 . . . G

(μ)
0,N−1

G
(μ)
1,0

. . . · · · G
(μ)
1,N−1

...
...

. . .
...

G
(μ)
N−1,0 G

(μ)
N−1,1 · · · G

(μ)
N−1,N−1

⎞
⎟⎟⎟⎟⎟⎠, (2.25)

and

ω =
1

D

[∫ ∞

−∞
Φ dy − 2

f

∫ ∞

−∞
wΦ dy

]
, Φ ≡

⎛
⎜⎝

Φ0

...

ΦN−1

⎞
⎟⎠. (2.26)

Solving for Ψ in (2.24), we obtain

Ψ = C−1G(μ)ω ; C ≡ I +
6

f2v2cD
G(μ) , (2.27)

where I is the N ×N identity matrix.

Having obtained Ψ in terms of Φ, we now derive a vector NLEP for Φ. Upon defining

the local operator L0 by

L0φ ≡ φ′′ − φ+ 2wφ , (2.28)

we then use (2.26) for ω to write (2.20a) in vector form as

L0Φ +
w2

fv2cD
C−1G(μ)

[∫ ∞

−∞

(
Φ − 2

f
wΦ

)
dy

]
= λΦ . (2.29)
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To obtain N uncoupled scalar NLEPs, we diagonalize C−1 and G(μ) by using the eigenpairs

G(μ)vj = κjvj for j = 0, . . . , N − 1 of G(μ). This yields

G(μ) = SΛS−1 , C−1 = S [I + β0Λ]−1 S−1 ; β0 ≡ 6

f2v2cD
, (2.30)

where S is the non-singular matrix whose columns are the eigenvectors of G(μ) and Λ is

the diagonal matrix of the eigenvalues κ0, . . . , κN−1. From the observation that
(
G(μ)

)−1
is a

tri-diagonal matrix, explicit formulae for these eigenvalues were calculated in Proposition

2 of [9] as

κj =
1

μσj
, j = 0, . . . , N − 1 , (2.31)

where σj for j = 0, . . . , N − 1 are given by

σ0 = eλ + 2fλ; σj = eλ + 2fλ cos

(
jπ

N

)
, j = 1, . . . , N − 1 . (2.32a)

Here eλ and fλ are defined in terms of μ ≡
√
τλ/D by

eλ ≡ 2 coth

(
2μ

N

)
, fλ ≡ − csch

(
2μ

N

)
. (2.32b)

The corresponding eigenvectors of G(μ) are

vt0 = (1, . . . , 1) ; v�,j = cos

[
jπ

N
(�− 1/2)

]
, j = 1, . . . , N − 1 , (2.32c)

where t denotes the transpose and v�,j denotes the �th component of the vector vj .

Upon substituting (2.30) into (2.29), and making use of the transformation Φ = SΦ̂,

we obtain the diagonal NLEP

L0Φ̂ + fβ0 [I + β0Λ]−1 Λw2

⎛
⎝

∫ ∞
−∞

(
Φ̂ − 2

f
wΦ̂

)
dy∫ ∞

−∞w
2 dy

⎞
⎠ = λΦ̂ , (2.33)

where β0 is defined in (2.30), and where we have used
∫ ∞

−∞w
2 dy = 6. While the components

of Φ̂ are generally different, for notational convenience we label Φ̂ = Φ̂e, where e is the

N-vector (1, . . . , 1)t. Since Λ is the diagonal matrix of eigenvalues κj , this substitution

leads to N uncoupled scalar NLEPs of the form

L0Φ̂+ fχ̃jw
2

⎛
⎝

∫ ∞
−∞

(
Φ̂− 2

f
wΦ̂

)
dy∫ ∞

−∞w
2 dy

⎞
⎠ = λΦ̂ , j = 0 , . . . , N − 1 , (2.34)

where χ̃j is defined by

χ̃j ≡ β0κj

1 + β0κj
. (2.35)
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In contrast to the NLEP problems for the GM and GS models analysed in [32]

and [12], the NLEP (2.34) involves the two separate non-local terms
∫ ∞

∞ Φ̂ dy and∫ ∞
∞ wΦ̂ dy. These terms arise from the fact that the O(ε−1) term in (1.3b) involves the

sum of two localized terms. Due to this complication, it initially appears that the gen-

eral theory developed in [32] is not applicable. However, as we now show, by a simple

manipulation we can recast (2.34) into the same general form as the NLEP analysed in

[32].

To do so, we first define I1 and I2 as I1 ≡
∫ ∞

−∞Φ̂ dy and I2 ≡
∫ ∞

−∞wΦ̂ dy. Then by using

(2.28) for L0Φ̂, together with the condition that Φ̂ → 0 as |y| → ∞, we integrate (2.34)

over −∞ < y < ∞ to obtain

−I1 + 2I2 + fχ̃j

[
I1 − 2

f
I2

]
= λI1 , (2.36)

which is then rearranged to yield

I1 − 2

f
I2 = − 2

f

[
1 + λ− f

1 + λ− χ̃jf

]
I2 . (2.37)

Finally, using (2.37) in (2.34), we obtain the NLEP problem

L0Φ̂− χjw
2

(∫ ∞
−∞wΦ̂ dy∫ ∞
−∞w

2 dy

)
= λΦ̂ , χj ≡ 2χ̃j

[
1 + λ− f

1 + λ− χ̃jf

]
, (2.38)

where χ̃j is defined in terms of κj in (2.35).

The NLEP in (2.38) is of the form given in Proposition 2.3 of [32] for the GM model

and in Principal Result 3.2 of [12] for the GS model. However, because the activator in

the Brusselator model acts as two separate sources for the inhibitor, the identity (2.37) is

needed, which results in a rather complicated coefficient in front of the non-local term in

(2.38). Finally, by substituting (2.35) and (2.31) into (2.38) we obtain the following main

result:

Principal Result 2.2 Let ε → 0 in (1.3) and consider the N-spike equilibrium solution con-

structed in Section 2.1. The stability of this solution on an O(1) time-scale is determined by

the spectrum of the NLEP

L0Φ̂− χjw
2

(∫ ∞
−∞wΦ̂ dy∫ ∞
−∞w

2 dy

)
= λΦ̂ , −∞ < y < ∞ , Φ̂ → 0 as |y| → ∞ , (2.39a)

where χj is given explicitly by

χj =
2

1 + μσj/β0

[
1 +

fμσj

fβ0 − (1 + λ)(β0 + μσj)

]
. (2.39b)

Here σj is defined in terms of μ in (2.32a), μ is defined in terms of λ in (2.21) and β0 is

defined in (2.30).
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We make a few remarks concerning (2.39). Firstly, the dependence of χj in (2.39) on τ

is strictly through the parameter μ =
√
τλ/D, the importance of which will be discussed

in the following section. From the explicit formula (2.32a), it follows that χj does not have

a branch point at the origin λ = 0. Secondly, the spectrum of (2.39) is well known for the

local eigenvalue problem corresponding to setting χj = 0. In this case, it is known from [15]

and [5] that, in addition to the zero eigenvalue associated with translation invariance, L0

has a unique positive eigenvalue ν0 = 5/4 corresponding to an eigenfunction φ0 of constant

sign, and has an additional discrete eigenvalue on the negative real line at ν2 = −3/4.

Finally, the spectrum of the NLEP for (2.39) is recast into a more convenient form by

first writing

Φ̂ = χj

(∫ ∞
−∞wΦ̂ dy∫ ∞
−∞w

2 dy

)
(L0 − λ)−1w2 ,

and then multiplying both sides of this equation by w and integrating over the real line.

In this way we obtain that the eigenvalues of (2.39) are the roots of the transcendental

equations gj(λ) = 0, for j = 0, . . . , N − 1, where

gj(λ) ≡ Cj(λ) − F(λ) , Cj(λ) ≡ 1

χj(λ)
, F(λ) ≡

∫ ∞
−∞wψ dy∫ ∞
−∞w

2 dy
, ψ ≡ (L0 − λ)−1w2 . (2.40)

2.3 Competition instabilities

In this section, we seek criteria in terms of D that guarantee that there is a positive real

solution to (2.40) in the limit τ → 0+. Such a root corresponds to an unstable real positive

eigenvalue of the NLEP (2.39). For τ → 0+ it will be shown that such a linear instability

is of competition-type in the sense that it conserves the sum of the amplitudes of the

spikes. The instability threshold condition on D will also be shown to apply to the case

where τ > 0.

We begin the analysis by recalling key properties of the function F(λ) when λ is real

and positive as determined in Proposition 3.5 of [32]. We then determine the behaviour

of Cj(λ) in (2.40) in the limit τ → 0+. Using the properties of Cj(λ) in this limit, together

with the properties of F(λ), we obtain criteria for which there exists a positive real value

of λ at which Cj(λ) and F(λ) intersect. Some global properties of F(λ) when λ is real and

positive, which were rigorously established in [32], are as follows:

F(λ) > 0 , F ′(λ) > 0, F ′′(λ) > 0, for 0 < λ < 5/4 ; F(λ) < 0, for λ > 5/4.

(2.41a)

Furthermore, since L0w = w2 and the operator (L0 − λ) is not invertible at λ = 5/4, we

obtain

F(0) = 1, F(λ) → +∞, as λ → 5/4−
. (2.41b)

To determine the behaviour of Cj(λ) as τ → 0+, we first write Cj(λ) in terms of σj as

Cj(λ) =
1

2

[
1 + ξj +

fξj

1 + λ− f

]
; ξj =

μσj

β0
, j = 0, . . . , N − 1. (2.42)
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For any branch of
√
λ, this function is analytic in the finite λ plane except at the simple

pole λ = −1+ f, which is on the negative real axis since 0 < f < 1. Upon taking the limit

μ → 0+ in σj in (2.32a), we see that ξj in (2.42) has the behaviour

ξ0 → 0+ ; ξj → Naj

β0
, aj ≡ 1 − cos

(
jπ

N

)
, j = 1, . . . , N − 1 , as τ → 0+ , (2.43)

where β0 is defined in (2.30).

Firstly, by (2.43) and (2.42), we have that C0(λ) ≡ 1/2 for all λ when τ = 0. Thus, by

(2.41), it follows that g0(λ) � 0 for any λ � 0. Moreover, from the rigorous study of [34]

(see Corollary 1.2 of [34]), we can conclude, more strongly, that when C0 = 1/2 there

are no roots to g0(λ) = 0 in the unstable right half-plane Re(λ) > 0 (see (2.4)). Thus,

the (1, . . . , 1)t mode, governing synchronous instabilities of the amplitudes of the spikes, is

always stable in the limit τ → 0+.

Next, consider the modes j = 1, . . . , N− 1. Since ξj in (2.43) for j > 0 is independent of

λ in the limit τ → 0+, it follows from (2.42) that C ′
j(λ) < 0 and Cj(λ) > 0 for λ � 0 when

j = 1, . . . , N−1. Thus, from (2.41), we conclude that if maxj Cj(0) < 1 for j = 1, . . . , N−1,

there are no real positive eigenvalues when τ = 0. A simple calculation using (2.42) and

(2.43) shows that as τ → 0+, we have the ordering CN−1(0) > CN−2(0) > . . . > C1(0).

Therefore, in the limit τ → 0+, (2.39) has no real positive eigenvalues when

CN−1(0) =
1

2

[
1 + ξN−1 − f

1 − f

]
< 1 . (2.44)

If CN−1(0) > 1, there is an unstable positive real eigenvalue when τ → 0+. The threshold

value DcN of D, as given below in (2.45), is obtained by setting CN−1(0) = 1, and then

using (2.43) for ξN−1 together with (2.30) for β0.

Although for the case τ > 0 it is no longer true that CN−1(λ) is monotonically decreasing,

we still have that CN−1(0) > 1 when D > DcN . Hence, by the properties of F(λ) given in

(2.41) it follows that there must still be a positive root to CN−1(λ) = F(λ). However, when

τ > 0 it is possible that there can be further real positive roots where the other curves

Cj(λ) for j = 0, . . . , N − 2 intersect F(λ). We summarize our instability result as follows.

Principal Result 2.3 Let ε → 0 and τ � 0 in (1.3). Then the N-spike equilibrium solution

(N � 2) constructed in Section 2.1 is unstable when

D > DcN ≡ 2f2

3N3(1 − f)
(
1 + cos π

N

) , 0 < f < 1 , (2.45)

and the spectrum of the NLEP (2.39) contains at least one unstable positive real eigenvalue.

For τ → 0+, the instability is of competition-type in the sense that any linearly unstable

eigenvector vj for the spike amplitudes must satisfy (1, . . . , 1) · vj = 0.

We now make some remarks. Firstly, for the limiting case τ → 0+, in Section 2.4 a

winding number calculation will be used to prove that there are no unstable complex

eigenvalues in the right half-plane when D < DcN . Therefore, for τ → 0+, the threshold

DcN gives a necessary and sufficient condition for stability. Secondly, by comparing (2.45)



Stability of localized spikes for the 1-D Brusselator RD model 529

with (2.47), we see that as τ → 0+, the N-spike equilibrium solution (2.15) is stable if

and only if it is stable to small eigenvalues. Thirdly, the term competition instability is

due to the fact that when such an instability is triggered, some spikes grow in amplitude

while others decrease. This is due to the difference in signs of the components of the

eigenvectors vj for j = 1, . . . , N − 1. As shown in the numerical experiments, computed

from the full Brusselator model (1.3), this linear instability triggers a nonlinear event

that leads to spike annihilation. In contrast, as was shown above, the synchronous mode

corresponding to v0 = (1, . . . , 1)t is always stable when τ is sufficiently small. Fourthly, DcN
decreases as ∼ N−3 when N is large, which is the same scaling as for the Schnakenberg

model (Corollary 3.1 of [31]). In contrast, the GM (Proposition 7 of [9]) and GS [12]

models have a more robust N−2 scaling in terms of the ability to support additional

spikes. Since D is inversely proportional to the square length of the domain, (2.45) shows

that in order to maintain stability the domain size must increase as the number of spikes

increases. Finally, in terms of the original Brusselator parameters B0, D0 and E0 in (1.6),

we have the stability criterion

D0 < D0cN ≡ 2E2
0B

2
0

3N3(B0 + 1)5/2
(
1 + cos π

N

) . (2.46)

Thus, a spike pattern can be stabilized with small D0 or large E0. Note that, by (1.4),

E2
0 = O(τ−1) so that D0cN = O(τ−1) as τ → 0+. However, if we require that D = O(1) with

respect to τ, then D0 must also be O(τ−1) by (1.4). Also, if τ = (B0 + 1)5/2/E2
0 is held

constant, then increasing B0 in (2.46) relaxes the stability criterion. This fact is reflected in

terms of the rescaled variables in (2.45), where increasing f = B0/(B0 + 1) towards unity

increases DcN .

Finally, we remark that the eigenvalue problem (2.17) admits another class of eigenval-

ues associated with translation-type instabilities, and these eigenvalues are of the order

λ = O(ε2) as ε → 0. These eigenvalues, studied in [27], were found to be real negative

when τ = O(1) if and only if D < DsN , where (cf. [27])

DsN ≡ f2

3N3(1 − f)
< DcN . (2.47)

This threshold value is the same as that calculated in (2.16) for the bifurcation point

corresponding to the emergence of asymmetric N-spike equilibria from a symmetric

N-spike equilibrium solution branch.

2.4 Complex eigenvalues and oscillatory instabilities

For the case D < DcN and τ = 0, we now use a winding number argument to prove

that (2.39) has no unstable eigenvalues with Re(λ) > 0. To calculate the number of zeros

of gj(λ) in the right half-plane, we compute the winding of gj(λ) over the contour Γ

traversed in the counterclockwise direction composed of the following segments in the

complex λ-plane: Γ+
I (0 < Im(λ) < iR, Re(λ) = 0), Γ−

I (−iR < Im(λ) < 0, Re(λ) = 0), and

ΓR is the semi-circle in the right half-plane defined by |λ| = R > 0, −π/2 < arg(λ) < π/2,

where R > 0.
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Each function gj(λ) in (2.40) for j = 0, . . . , N − 1 is analytic in Re(λ) � 0 except

at the simple pole λ = 5/4 corresponding to the unique positive eigenvalue of the

operator L0 in (2.28). Therefore, by the argument principle we obtain that Mj − 1 =

(2π)−1 limR→∞[arg gj]Γ , where Mj is the number of zeros of gj in the right half-plane,

and where [arg gj]Γ denotes the change in the argument of gj over Γ . Furthermore,

from (2.40), (2.42) and (2.43) it follows that gj → (1 + ξj)/2 as |λ| → ∞ on the semi-

circle ΓR so that limR→∞[arg gj]ΓR = 0. For the contour Γ−
I , we use gj(λ) = gj(λ) so

that [arg gj]Γ−
I

= [arg gj]Γ+
I
. By summing the roots of the N separate functions gj(λ) for

j = 0, . . . , N−1, we obtain that the number M of unstable eigenvalues of the NLEP (2.39)

when τ = 0 is

M = N +
1

π

N−1∑
j=0

[
arg gj

]
Γ+
I

. (2.48)

Here [arg gj]Γ+
I

denotes the change in the argument of gj as the imaginary axis λ = iλI is

traversed from λI = +∞ to λI = 0.

To calculate [arg gj]Γ+
I

when τ = 0, we substitute λ = iλI into (2.42) for Cj , and separate

the resulting expression into real and imaginary parts to obtain

Cj(iλI ) = CjR(λI ) + iCjI (λI ) , (2.49a)

where

C0R(λI ) =
1

2
, C0I (λI ) = 0, (2.49b)

CjR(λI ) =
1

2

[
1 + ξj +

fξj(1 − f)

(1 − f)2 + λ2
I

]
, CjI (λI ) = − fξjλI

(1 − f)2 + λ2
I

, j = 1, . . . , N − 1 .

(2.49c)

In (2.49) we use the limiting behaviour for ξj as τ → 0+ as given in (2.43).

Similarly, we separate the real and imaginary parts of F(iλI ), where F(λ) was defined

in (2.40) to obtain

F(iλI ) =

∫ ∞
−∞wL0

[
L2

0 + λ2
I

]−1
w2 dy∫ ∞

−∞w
2 dy

+ i

(
λI

∫ ∞
−∞w

[
L2

0 + λ2
I

]−1
w2 dy∫ ∞

−∞w
2 dy

)
≡ FR(λI ) + iFI (λI ) ,

(2.50)

which determines g(iλI ) from (2.40) as

gj(iλI ) = CjR(λI ) − FR(λI ) + i
[
CjI (λI ) − FI (λI )

]
≡ gjR(λI ) + igjI (λI ) . (2.51)

In order to calculate [arg gj]Γ+
I
, we require the following properties of FR(λI ) and FI (λI )

as established rigorously in Propositions 3.1 and 3.2 of [32]:

FR(0) = 1 ; F ′
R(λI ) < 0 , λI > 0 ; FR(λI ) = O(λ−2

I ) , λI → +∞ , (2.52a)

FI (0) = 0 ; FI (λI ) > 0 , λI > 0 ; FI (λI ) = O(λ−1
I ) , λI → +∞ . (2.52b)

By using (2.49) and (2.52), we obtain from (2.51) that g0R < 0 and g0I = 0 at λI = 0,

while g0R > 0 and gI0 = 0 as λI → +∞. In addition, since FI (λI ) > 0, we conclude that
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g0I < 0 for λI > 0. Therefore, [arg g0]Γ+
I

= −π, and hence (2.48) becomes

M = N − 1 +
1

π

N−1∑
j=1

[
arg gj

]
Γ+
I

. (2.53)

The calculation of [arg gj]Γ+
I

for j = 1, . . . , N−1 is similar, but depends on the range of

D. Suppose that D < DcN , where DcN is the threshold of (2.45) so that CjR(0) < 1 for all

j = 1, . . . , N−1. Then, from (2.49), (2.52) and (2.51), we calculate that g0R < 0 and g0I = 0

at λI = 0, while g0R > 0 and gI0 = 0 as λI → +∞. In addition, since FI (λI ) > 0 and

C0I (λI ) < 0, we get g0I < 0 for all λI > 0. This gives [arg gj]Γ+
I

= −π for j = 1, . . . , N − 1.

From (2.53), we then obtain the following result:

Principal Result 2.4 Let τ → 0+ and ε → 0. Then, when D < DcN , where DcN is the

threshold of (2.45), the NLEP (2.39) has no unstable eigenvalues in Re(λ) > 0. Therefore,

for τ → 0+, the threshold DcN gives a necessary and sufficient condition for the stability of

the N-spike equilibrium solution (2.15a) of (1.3).

We remark that as D is increased above the threshold DcN in such a way that CN−1(0) > 1

but Cj(0) < 0 for j = 1, . . . , N − 2, we readily calculate from (2.49), (2.52) and (2.51) that

[arg gN−1]Γ+
I

= 0 and [arg gj]Γ+
I

= −π for j = 1, . . . , N − 2. Therefore, from (2.53) we

conclude that M = 1, and the only eigenvalue entering the right half-plane is the real

eigenvalue corresponding to the competition instability analysed in Section 2.3. We remark

that since τ appears only through the factor τλ, increasing τ cannot result in a competition

instability. Thus, the threshold criterion (2.45) for stability is also valid for a range of

0 < τ < τ0 for some τ0 > 0 to be determined.

Next, we show that for 0 < D < DcN , there are exactly 2N unstable eigenvalues in

Re(λ) > 0 when τ > 0 is sufficiently large, and that these eigenvalues are on the positive

real axis in 0 < λ < 5/4. For τ 
 1, we obtain from (2.42) and (2.32a) that Cj = O(
√
λτ)

on ΓR so that limR→∞[arg gj]ΓR = π/2. In this way we obtain in place of (2.48),

M =
5N

4
+

1

π

N−1∑
j=0

[
arg gj

]
Γ+
I

. (2.54)

For τ 
 1 and λ = iλI , we obtain from (2.42) and (2.32a),

Cj =
1

2

[
1 + κ

√
iτλI +

fκ
√
iτλI

1 − f + iλI

]
, κ ≡ 2

β0

√
D
. (2.55)

Separating into real and imaginary parts, with Cj = CjR + iCjI , we get for τ 
 1 and

λI � 0,

CjR =
κ

√
τλI

2

|1 + iλI |
|(1 − f) + iλI |

cos
(π

4
+ θ0 − θ1

)
+

1

2
,

CjI =
κ

√
τλI

2

|1 + iλI |
|(1 − f) + iλI |

sin
(π

4
+ θ0 − θ1

)
,

(2.56a)
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where θ0 and θ1 are defined by

θ0 = arctan (λI ) , θ1 = arctan
(
λI/(1 − f)

)
. (2.56b)

Since λI > 0, and 0 < f < 1, then 0 < θ0 < θ1 < π/2. Note that CjR > 0 for any λI > 0

on this range of θ0 and θ1.

For τ 
 1, we have gj ∼ ceiπ/4
√
λI , where c > 0 is a real constant as λI → +∞.

Therefore, we have arg(gj) = π/4 as λI → +∞. Now for λI = 0, we have gjR < 0

and gjI = 0 when D < DcN so that arg(gj) = π when λI = 0. In order to prove that

[arg gj]Γ+
I

= 3π/4, we must show that gjI > 0 whenever gRj = 0. Since FR > 0 and

CjR(λI ) > 0 for λI > 0, but CjR = O(
√
τ) 
 1 for τ 
 1, it follows that any root λ∗

I of

gRj = 0 must be such that λ∗
I = O(τ−1) � 1. Thus, for τ 
 1, we have θ0 → 0 and θ1 → 0

as λI → 0, and so we conclude from (2.56) that CjI > 0 with CjI = O(1) at λ∗
I = O(τ−1).

Finally, since gjI = CjI − FI , and FI (0) = 0, we conclude that gjI > 0 at any root λ∗
I � 1

of gjR = 0. This proves that [arg gj]Γ+
I

= 3π/4 for each j = 0, . . . , N − 1. Finally, from

(2.54) we conclude that M = 2N.

To determine more precisely the location of these unstable eigenvalues, we proceed as in

Section 2.3. For τ 
 1, and on the positive real axis in 0 < λ < 5/4, we obtain from (2.42)

and (2.32a) that Cj(λ) is a concave monotone increasing function. Since Cj(0) < F(0) = 1

when D < DcN for j = 0, . . . , N − 1, it follows from the properties of F(λ) in (2.41) that

for each j, Cj(λ) = F(λ) must have two roots on the interval 0 < λ < 5/4. We summarize

the result as follows.

Principal Result 2.5 Let τ → ∞ and ε → 0. Then, when 0 < D < DcN , where DcN is the

threshold of (2.45), the NLEP (2.39) has exactly 2N unstable eigenvalues in Re(λ) > 0.

These eigenvalues are located on the real axis in the interval 0 < λ < 5/4.

Therefore, for the parameter range 0 < D < DcN , and by the continuity of the branches

of eigenvalues with respect to τ, we conclude that for each j = 0, . . . N − 1, there must be

a minimum value τ0j > 0 of τ for which the NLEP (2.39) has a complex conjugate pair

of eigenvalues at λ = ±iλ0
Ij , corresponding to each eigenmode in (2.32c). We define the

oscillatory stability threshold τ0 as the minimum of these thresholds, i.e. τ0 = minj τ0j . Our

numerical results show that τ0 is a Hopf bifurcation point, in the sense that an unstable

complex conjugate pair of eigenvalues enters the right half-plane for τ slightly above τ0.

From (2.32c) the j = 0 mode corresponds to synchronous spike amplitude oscillations,

while the other modes correspond to asynchronous oscillations in the spike amplitudes.

For the GM model, as studied in [32], an ordering principle τ0j < τ0j+1, j = 0, . . . , N − 2

was observed for all values of the parameters tested. That is, the dominant oscillatory

instability is that of synchronous oscillations of the spike amplitudes. In contrast, for all

values of the parameter f tested, we find an interval of D in 0 < D < DcN in which this

ordering principle is reversed. Thus, the Brusselator admits asynchronous oscillations not

observed in previous studies of the stability of spike solutions. We conjecture that this

is due to the activator acting as two separate sources for the inhibitor, necessitating the

manipulation (2.37) to obtain the multiplier of the non-local term in the NLEP (2.38). We
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Figure 2. Plots of τ0j(D) (left and centre figures) and λ0
Ij(D) (right figure) for N = 2 and f = 0.5.

The critical value Dc2 ≈ 0.0417 is indicated by the vertical dotted line. In all figures, the solid and

dashed curves correspond to j = 0 and j = 1, respectively. In the magnified interval shown in the

centre figure, τ01 < τ00, indicating the possibility of asynchronous oscillations.

illustrate asynchronous oscillatory phenomena for two-, three- and four-spike examples in

Section 2.5.

To determine the smallest value τ0j for which there are two eigenvalues λ = ±iλ0
Ij with

λ0
Ij > 0, on the imaginary axis, and no eigenvalues in the right half-plane, we solve the

coupled system gRj = gIj = 0 given in (2.51) for τ0j and λ0
Ij . In (2.51), CjR(λI ) = Re(Cj(iλI ))

and CjI (λI ) = Im(Cj(iλI )), where Cj(λ) is defined in (2.42) in terms of σj as given in (2.32a).

The critical value τ0 is then defined by

τ0 = min
j
τ0j . (2.57)

For given parameters D and f, we used the MATLAB function fsolve() to solve the

system gRj = gIj = 0 for τ0j and λ0
Ij . To evaluate FR(λI ) and FI (λI ) in (2.50), we discretized

the operator [L2
0 + λ2

I ] over the interval −20 < y < 20 using 500 grid points and used

MATLAB’s inversion algorithm to solve the boundary value problem. The trapezoidal rule

was used to evaluate the integrals in FR(λI ) and FI (λI ). Halving the number of grid points,

or halving the interval length, did not significantly affect the calculated values of FR(λI )

and FI (λI ). In all subsequent plots of τ0j and λ0
Ij , we treat D as the bifurcation parameter

and hold f fixed at a particular value. For the values of f tested in the interval 0 < f < 1,

the qualitative behaviour of τ0j(D) remained unchanged.

In Figure 2(a), we plot the curves τ0j(D) for N = 2 and f = 0.5. The critical value Dc2 is

indicated by the vertical dotted line in the figure. When D = Dc2, the j = 1 curve ends as

the corresponding pair of imaginary eigenvalues meet at the origin, as shown in the plot

of λ0
Ij(D) in Figure 2(c). As D increases above Dc2, one eigenvalue moves on the real axis

into the right half-plane. Because the j = 0 mode does not undergo such a bifurcation, the

j = 0 curve continues beyond Dc2 but is not plotted. In general, the jth curve ends when

the jth mode becomes unstable to a real eigenvalue crossing into the right half-plane from

the origin. In Figure 2(b), we magnify the interval given in Figure 2(a) where the ordering

principle τ01 < τ00 holds. For D in this interval, we expect asynchronous oscillations to be

the dominant instability. For D to the right of this interval, the familiar ordering principle

τ00 < τ01, guaranteeing synchronous oscillatory instabilities, is restored.
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Figure 3. Plots of τ0j(D) (left and centre figures) and λ0
Ij(D) (right figure) for N = 3 and f = 0.6.

The critical value Dc3 ≈ 0.0148 is indicated by the vertical dotted line. In all figures, the solid,

dashed and dotted curves correspond to j = 0, 1, 2, respectively. In the magnified interval shown in

the centre figure, τ02 < τ01 < τ00.
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1 2 3 4 5 6

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

D

λ
0 I
j
(D

)

(c) λ0
Ij(D) for N = 4

Figure 4. Plots of τ0j(D) (left and centre figures) and λ0
Ij(D) (right figure) for N = 4 and f = 0.6.

The critical value Dc4 ≈ 0.0055 is indicated by the vertical dotted line. In all figures, the solid,

dashed, dotted, and dash-dotted curves correspond to j = 0, 1, 2, 3, respectively. In the magnified

interval shown in the centre figure, τ03 < τ02 < τ01 < τ00.

In Figure 3(a), we show a plot of τ0j(D) for a three-spike example with f = 0.6. We

again plot only the interval 0 < D < Dc3 above which the j = 2 curve ceases to exist. In

the plot of λ0
Ij(D) in Figure 3(c), we see that λ0

I2 → 0 as D → D−
c3. In Figure 3(b), the

reverse ordering principle is again observed for an interval of D, indicating the possibility

of asynchronous oscillations. As similar to the previous two-spike case, for D to the

right of this interval, the usual ordering principle guaranteeing synchronous oscillatory

instabilities is restored. The same characteristics of τ0j(D) and λ0
Ij(D) for a four-spike

example with f = 0.6 are seen in Figures 4(a)–(c).

For the two-spike example of Figure 2 with f = 0.5, we trace the paths of the pair

of complex conjugate eigenvalues in the right half-plane as τ increases past the Hopf

bifurcation value computed in Figures 2(a) and (b). For the two modes j = 0 (Figure 5(a))

and j = 1 (Figure 5(b)), we start with the pair (τ, λ) = (τ0j(D), λ0
Ij) and solve g(λ) = 0 in

(2.40) for increasingly larger values of τ. For the j = 0 mode, we take D = 0.03 whereas

for the j = 1 mode, we take D = 0.006 so that in both cases the eigenvalues being tracked

are the first ones to cross into the right half-plane. The eigenvalues converge onto the
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Figure 5. Plots of the paths of λ = λI + iλR with N = 2, and f = 0.5 for (D, j) = (0.03, 0) (left) and

(D, j) = (0.006, 1) (right) as τ increases past its Hopf bifurcation value τ0j(D). The arrows denote the

direction of traversal for increasing τ. The eigenvalues converge onto the positive real axis when

τ reaches some value τc(D) > τ0j(D). The eigenvalues split, with one tending to 0 and the other

tending to ν0 = 5/4 as τ → ∞, where ν0 is the unique positive eigenvalue of the operator L0.

positive real axis when τ is sufficiently large. As τ is increased further, the eigenvalues

split and migrate along the positive axis towards 0 and ν0 = 5/4 as τ → ∞, where ν0 is

the principal eigenvalue of the operator L0.

Key characteristics shared by Figures 2–4 are the behavior of τ0j and λ0
Ij for small

values of D. These figures suggest that τ0j → ∞, while λ0
Ij approaches a constant value

also independent of j. We now provide a simple analytical explanation for this limiting

behaviour. We remark that this unbounded behaviour of τ0j as D → 0 is in marked

contrast to the finite limiting behaviour as obtained in [12] or [32] for the GS and GM

RD models, respectively.

In the limit D → 0, a simple scaling argument shows that |μ| → ∞, where μ =
√
τλ/D.

We then readily obtain from (2.32a) that σj → 2 as D → 0 and that β0 = O(D−1).

Therefore, from (2.42), we get the limiting behaviour,

Cj ∼ C ≡ 1

2

[
1 + αz

√
λ+

αfz
√
λ

1 − f + λ

]
, z =

√
τD, α =

α2v2c
3

, j = 0, . . . , N − 1 .

(2.58)

We set λ = iλI , where λI > 0, and then separate (2.58) into real and imaginary parts to

get

C ≡ CR(λI ) + iCI (λI ) ≡ 1

2

[
1 +

αz√
2

√
λIM+

]
+ i

1

2
√

2
αz

√
λIM−; M± ≡ 1 − f ± λIf + λ2

I

(1 − f)2 + λ2
I

.

(2.59)

Since C is independent of j, it follows that the root τ = τ0l and λI = λIl to the limiting

coupled system CR(λI ) = FR(λI ) and CI (λI ) = FI (λI ) must be independent of j.
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For this coupled system to possess a root, it is readily seen that we must have

z =
√
τD = O(1) as D → 0, which implies that τ0l = O(D−1) as D → 0. We use (2.59) to

eliminate z between the coupled system CR(λI ) = FR(λI ) and CI (λI ) = FI (λI ). In this way

we obtain that λIl must be a root of

HR(λI ) = HI (λI ) , (2.60a)

where HR(λI ) and HI (λI ) are defined by

HR(λI ) =
2FR(λI ) − 1

λ2
I + fλI + 1 − f

, HI =
2FI (λI )

λ2
I − fλI + 1 − f

. (2.60b)

Therefore, for D → 0, we conclude that λIl depends only on f and is independent of

N. The scaling τ0l = O(D−1) was not observed in the analysis of the GS [12] or GM

models [32].

We now prove the existence of a solution λIl > 0 to (2.60). We begin by noting that

HR(0) = (1 − f)−1 > 0 and that HR(λI ) has no poles when λI � 0. Also, because FR → 0

as λI → ∞, we find from (2.60b) that HR ∼ −1/λ2
I < 0 as λI → ∞. To show the existence

of an intersection between HR and HI , there are two cases to consider. The first case

is when 0 < f < 2(
√

2 − 1) so that the denominator of HI is always positive. Since

FI (0) = 0 < FR(0) = 1, and FI (λI ) > 0 for λI > 0, then by the properties of HR there must

exist a solution to (2.60a). When 2(
√

2 − 1) < f < 1, HI (λI ) has two poles on the positive

real axis at λI = λ
l,r
I ordered 0 < λlI < λrI with λlI → 0+ as f → 1−. Therefore, HI → +∞

as λI → λl−I . Because HR(0) > 0 and is bounded for all λI while HI (0) = 0, there must

exist a solution to (2.60a) on the interval 0 < λI < λlI . This completes the proof of the

existence of a root λIl > 0 under the scaling τ = O(D−1) as D → 0. While we have not

been able to show analytically that λIl is unique, we have not observed numerically an

example that yields more than one solution to (2.60a).

In Figure 6(a), we show the log–log relationship between τ0j and small D for the

examples shown in Figures 2–4. Note that in each case, all curves corresponding to modes

j = 0, . . . , N − 1 are plotted. However, as stated above, τ0j is independent of j for small D

and thus the curves are indistinguishable in the plot. In Figure 6(b), we plot N curves of

λ0
Ij as a function of f with D small for N = 2, 3, 4. We also plot the solution to (2.60a).

Although for each value of N we use a different value of D specified as D = DcN/10,

all curves are indistinguishable at the resolution allowed by the figure. Because λlI → 0+

as f → 1−, we expect theoretically that λIl → 0+ in this limit. Numerically, however, the

problem (2.60a) for 1 − f small becomes ill-conditioned and our numerical solver fails

when f is too close to f = 1.

The main limitation of our analysis is that we are unable to determine whether, for

each function gj , a complex conjugate pair of pure imaginary eigenvalues exists at only

one value of τ0j for all the ranges of the parameters. Our numerical experiments suggest

that for 0 < τ < τ0j and D < D0cN , the pattern is stable. This indicates that our computed

thresholds τ0j are the minimum values of τ for which an oscillatory instability occurs.

One possible way to obtain a rigorous bound on τ0j is to use the following inequality,

as derived in equation (2.29) of [33] (see also equation (5.62) of [35]), for any eigenvalue
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Figure 6. The log–log relationship between τ0j and small D with parameters from Figures 2–4

(left), and λ0
Ij versus f with D small for N = 2, 3, 4 (right). In the left figure, the solid lines are

numerically computed solutions of g̃Rj = g̃Ij = 0, while all the dotted lines have slope −1. The

top line corresponds to N = 2, f = 0.5, the centre line to N = 3, f = 0.6 and the bottom line

corresponds to N = 4 and f = 0.6. Different curves of each example corresponding to modes

j = 0, . . . , N− 1 are indistinguishable. In the right figure, the curves of λ0
Ij versus f generated by the

solution to g̃Rj = g̃Ij = 0 are plotted, as is the solution to (2.60a). These curves are indistinguishable

at the resolution allowed by the figure.

λ of the NLEP of (2.39) with multiplier χj:

|χj − 1|2 + Re
(
λ̄χj

) (∫ ∞
−∞ w

2 dy∫ ∞
−∞ w

3 dy

)
� 0 . (2.61)

Upon evaluating the integral ratio, and then using χj = 1/Cj and Re(z̄) = Re(z), we

obtain that (2.61) reduces to

|Cj − 1|2 +
5

6
Re(λCj) � 0 . (2.62)

For RD systems in [33] and Section 5 of [35] for which Cj is a simple rational function

of λ, (2.62) was used successfully to obtain a rigorous bound on the Hopf bifurcation

threshold of τ. However, for the Brusselator, Cj in (2.42) is not rational in λ, and it is not

clear how to use (2.62) to obtain an explicit analytical bound on the Hopf bifurcation

threshold τ0j .

2.5 Numerical validation

Next, we illustrate the theory presented in Sections 2.3 and 2.4 regarding competition

and oscillatory instabilities of N-spike equilibria. We solve the Brusselator model without

boundary flux (1.3) numerically using the MATLAB partial differential equations solver
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pdepe() with non-uniformly spaced grid points distributed according to the mapping,

y = x+

N−1∑
i=0

tanh
[x− xi

2ε

]
; −1 −N < y < 1 +N,

where x is the physical grid. The initial conditions were taken to be a perturbation of the

equilibrium spike solution of the form

u(x, 0) = u∗
e(x)

[
1 + δ

N−1∑
k=0

dke
−(x−xk)2/(4ε2)

]
, v(x, 0) = v∗

e (x), (2.63)

where δ � 1 is taken to be 0.002, and dk is the (k + 1)th component of the vector d to

be defined below. Either 2000 (ε = 0.005) or 4000 (ε = 0.001) grid points were used to

produce the numerical results below. In (2.63), instead of ue, ve given in (2.15), we use

the true equilibrium u∗
e , v

∗
e calculated using small τ starting from the initial conditions

ue, ve. Because τ does not influence the equilibrium solution, u∗
e , v

∗
e may be used as valid

initial conditions for any value of τ. We briefly explain the reason for this procedure. With

an insufficiently small choice for τ while starting with ue and ve as initial conditions, we

observe an immediate annihilation of one or more of the spikes. We conjecture that this is

due to the inaccuracy of the asymptotic solution associated with the non-zero background

of the activator, coupled with the sluggish response of the inhibitor. However, for τ

sufficiently small, the inhibitor is able to respond quickly to prevent an annihilation,

allowing the system to evolve to a spike equilibrium state u∗
e , v

∗
e .

In (2.63), the choice of the vector d depends on the phenomenon that we illustrate. In

computations illustrating competition instabilities, d is taken to be a multiple of vN−1, the

eigenvector given in (2.32c) associated with the eigenvalue that first crosses into the right

half-plane as D is increased above DcN when τ is sufficiently small. The values of D in

the experiments illustrating competition instabilities will be such that only the j = N − 1

mode is unstable. In computations illustrating oscillatory instabilities, d is taken to be a

multiple of the vector
∑N−1

j=0 vj , with vj given in (2.32c), which allows for all the modes

to be present initially. We track the evolution of the modes through the quantity bamp
j ,

defined as the amplitude of the oscillations of bj given by

bj = |Δutmvj | , Δum ≡ (um0−u∗
e(x0, 0) , . . . , umN−1−u∗

e(xN−1, 0))t ; j = 0, . . . , N−1 , (2.64)

allowing clear identification of which modes grow or decay. Here umn denotes the numer-

ically computed solution at the jth equilibrium spike location defined by umj ≡ u(xj, t)

where xj = −1 + (2j + 1)/N with j = 0, . . . , N − 1. In all experiments, d is normalized so

that maxk dk = 1.

We consider three experiments with two, three and four spikes. In each experiment

f is fixed, while different combinations of τ and D are used to illustrate the theory

for competition and oscillatory instabilities. The results are presented using plots of the

amplitude of each spike umn ≡ u(xn, t) versus time. For certain oscillatory examples, we

also plot the quantity bamp
j versus time. In our computations, we limit the time-scale to

much less than O(ε−2) so that the spikes remain approximately stationary over the time

intervals shown.
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Figure 7. Experiment 1: The left figure is the initial condition for u (solid curve and left axis) and

v (dashed curve and right axis) for N = 2 with ε = 0.005, f = 0.5 and D = 0.043 > Dc2 = 0.0417.

The right figure shows the amplitudes of the left (solid curve) and right (dashed curve) spikes for

τ = 0.01 versus time. The right spike annihilates as time increases.

Experiment 1 In this experiment we consider competition and oscillatory instabilities of a

two-spike equilibrium with f = 0.5. We begin with an example of competition instability.

For ε = 0.005 and D = 0.043, in Figure 7(a) we plot the initial conditions for u and v on

the left and right axes, respectively. Note the non-zero background of u. Using the results

depicted in Figure 2(a), we calculate that τ0(D) = 0.165, while using (2.45) we calculate

Dc2 = 0.0417. For τ = 0.01 < τ0(D) and D > Dc2, we expect a competition instability in

which one spike is annihilated with no oscillation in the amplitudes. In Figure 7(b), we

plot the amplitudes um0 and um1 of the two spikes as a function of time. As suggested by

the eigenvector v1 in (2.32c), one spike annihilates as time increases. Note that the spike

amplitude decays approximately to the value of the non-zero background state.

We now illustrate oscillatory phenomena. In Figure 8(a), we plot the spike amplitudes

when D = 0.03 < Dc2 and τ = 0.17 < τ0(D) = τ00 = 0.183. As expected, no spike

annihilations occur while initial oscillations decay. While the equilibrium is stable to large

eigenvalues for this combination of D and τ, we calculate from (2.47) that D > D∗
2 = 0.021.

Thus, we expect to observe a drift-type instability when t = O(ε−2). Next, for the same

value of D, we set τ = 0.191 > τ0(D) so that the synchronous mode undergoes a

Hopf bifurcation. The spike amplitudes are plotted in Figure 8(b). As expected, the

spike amplitudes synchronize quickly and oscillate with growing amplitude in time. The

eventual annihilation of the spikes suggests that the Hopf bifurcation is subcritical for

these parameter values.

In the next example, we take ε = 0.001 and D = 0.006. In Figure 2(b) we see that for

this value of D, the asynchronous oscillatory mode is unstable if τ > τ0(D) = τ01 = 1.065,

while the synchronous mode is stable if τ < τ00 = 1.083. In Figure 9(a), we plot the spike

amplitudes when τ = 1.04 during the initial growth of the oscillations. Note the clear

contrast between Figures 9(a) and 8(b), where the spikes oscillate out of phase in the

former and in phase in the latter. In Figure 9(b), we show what appears to be regular
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Figure 8. Experiment 1: The left figure is a plot of spike amplitudes for N = 2, ε = 0.005, f = 0.5,

D = 0.03 and τ = 0.17. The critical value of τ is τ0(D) = 0.183. The solid curve is um0 and the

dashed curve is um1. In the right figure, we make a similar plot with τ = 0.191 > τ0(D).
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(b) Asynchronous oscillations for large t
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Figure 9. Experiment 1: In the left figure, we plot spike amplitudes for the initial growth of

asynchronous oscillations. In the centre figure, we show the large time behaviour of what appears

to be regular asynchronous oscillations. The solid (dashed) curve is um0 (um1). In the right figure, we

plot the initial growth and decay of bamp
1 (dashed curve) and bamp

0 (solid curve). The parameters are

N = 2, ε = 0.001, f = 0.6, D = 0.006 and τ = 1.04. The threshold value is τ0(D) = τ01 = 1.065, and

corresponds to asynchronous oscillations.

asynchronous oscillations, suggesting that the Hopf bifurcation may be supercritical for

the parameters used. In Figure 9(c) we plot the initial growth of bamp
1 and the initial decay

of bamp
0 , consistent with predictions from analysis. Both modes are present, with the j = 1

mode being dominant. We remark that while the numerical threshold in τ is not equal

to the theoretical value, we have observed in numerous experiments that agreement with

analysis improves as ε is decreased.

Experiment 2 In this experiment, we consider instabilities of a three-spike solution with

f = 0.6. We first consider a competition instability. In Figure 10(a), we plot the initial

conditions for u and v for ε = 0.005 and D = 0.017 > Dc3 = 0.0148. The initial

perturbation, according to v2 in (2.32c), increases the amplitude of the first and third
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Figure 10. Experiment 2: The left figure is the initial condition for u (solid curve and left axis) and

v (dashed curve and right axis) for N = 3 with ε = 0.005, f = 0.6 and D = 0.017 > Dc3 = 0.0148. In

the right figure, we plot um0 and um2 (solid curve) and um1 (dashed curve) versus time with τ = 0.01.

The second spike annihilates as time increases.

spikes while decreasing that of the middle spike. For τ = 0.01 < τ0(D) = τ00 = 0.28, we

plot the spike amplitudes versus time in Figure 10(b), observing that the middle spike

annihilates while the other two spikes increase in amplitude. This increase in amplitude,

also observed in Figure 7(b) of Experiment 1, is expected because the common spike

amplitude increases when the number of spikes decreases (see (2.8) and (2.15a)). For a

perturbation in the −v2 direction we observe the annihilation of the first and third spikes

(not shown).

To illustrate oscillatory behaviour, we take ε = 0.005 and D = 0.009, so that all real

eigenvalues lie in the left half-plane if τ is small enough. Using Figure 3(a), we calculate

τ0(D) = τ00 = 0.3994. In Figure 11(a), we set τ = 0.37 < τ0(D), so that oscillations decay

in time. For stability also to small eigenvalues, however, we require D < D∗
3 = 0.011. In

Figure 11(b), we set τ = 0.42, so that the spike amplitudes quickly synchronize and the

subsequent oscillations grow in time. As in Experiment 1, we observe the annihilation of

the spikes, suggesting that the Hopf bifurcation is subcritical.

We next decrease D to D = 0.0034 so that, as suggested by Figure 3(b), asynchronous

oscillations are the dominant instability. We calculate that τ0(D) = τ02 = 1.518, τ01 = 1.544

and τ00 = 1.557. In Figures 12(a) and (b) we plot, respectively, the transient and large

time behaviour of the spike amplitudes for ε = 0.001 and τ = 1.51. In clear contrast to

Figure 11(b), the spike amplitudes oscillate out of phase for both small and large time. In

Figure 12(b), as the form of the eigenvector v2 in (2.32c) suggests, the first and third spikes

oscillate approximately in phase with each other, while out of phase with the second spike.

For large time, the oscillations occur within an envelope that oscillates slowly in time

relative to the oscillations of the spike amplitudes. In Figure 12(c), we plot the initial

growth and decay of bamp
j for all three modes. Consistent with the results depicted in

Figure 3(b), the j = 2 mode grows while the other two modes decay. For large time, all

modes are present with the dominant mode being j = 2.
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Figure 11. Experiment 2: In the left figure, we plot um0 (solid curve), um1 (dashed curve) and um2

(dotted curve) for N = 3, ε = 0.005, f = 0.6, D = 0.009 and τ = 0.37. The right figure is similar

except that τ is increased to τ = 0.42. The critical value of τ is τ0(D) = 0.3994.
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(a) Asynchronous oscillations for small t
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(b) Asynchronous oscillations for large t
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Figure 12. Experiment 2: In the left and centre figures, we plot, respectively, the transient and

large time asynchronous oscillations of um0 (solid curve), um1 (dashed curve) and um2 (dotted curve).

The first and third spikes oscillate almost in phase for large time. In the right figure, we plot the

initial growth and decay of bamp
j for j = 0 (solid curve), j = 1 (dashed curve) and j = 2 (dotted

curve). The parameters are N = 3, ε = 0.001, f = 0.6, D = 0.0034 and τ = 1.51. The threshold value

is τ0(D) = τ02 = 1.518.

Experiment 3 In this experiment, we illustrate instabilities of a four-spike equilibrium

with f = 0.6. In Figure 13(a), we plot the initial conditions for u and v with ε = 0.005 and

D = 0.0057. We calculate from (2.45) that Dc4 = 0.0055 < D. With τ = 0.01 < τ0(D) =

0.2344, we expect an annihilation of one or more spikes without oscillatory behaviour.

The form of v3 in (2.32c) suggests that the second spike is the first to annihilate while the

fourth spike decays in amplitude as the other two spikes grow. Once the first annihilation

occurs, the resulting three-spike pattern is no longer in equilibrium and thus evolves

according to the dynamics derived in [27], and any subsequent annihilations should they

occur, are beyond the scope of this analysis. In Figure 13(b), we plot the spike amplitudes

up to the time of the annihilation of the second spike.
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Figure 13. Experiment 3: The left figure is the initial condition for u (solid curve and left axis) and

v (dashed curve and right axis) for N = 4 with ε = 0.005, f = 0.6 and D = 0.0057 > Dc4 = 0.0055.

In the right figure, we plot um0 (solid curve), um1 (dashed curve), um2 (dotted curve) and um3 (dash-

dotted) curve versus time with τ = 0.01. The second spike annihilates as time increases. All complex

eigenvalues are in the stable left half-plane.
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Figure 14. Experiment 3: In the left figure, we plot um0 (solid curve), um1 (dashed curve) and um2

(dotted curve) and um3 (dash-dotted curve) for N = 4, ε = 0.005, f = 0.6, D = 0.004 and τ = 0.27.

The right figure is similar except τ = 0.31. The critical value of τ is τ0(D) ≈ 0.287.

To show oscillatory phenomena, we take ε = 0.005 and D = 0.004. Using the data from

Figure 4(a), we calculate τ0(D) = τ00 = 0.287. In Figure 14(a), we plot the spike amplitudes

for τ = 0.27 so that the equilibrium solution is stable to large eigenvalues. Here we require

D < D∗
4 = 0.00469 for the equilibrium also to be stable to small eigenvalues. In Figure

14(b), we plot the spike amplitudes for τ = 0.31 so that synchronous oscillations grow

in time until all spikes annihilate. As in Experiment 2, we observe oscillatory behaviour

subsequent to annihilation.
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Figure 15. Experiment 3: In the left and centre figures, we plot, respectively, the transient and

large time asynchronous oscillations of um0 (solid curve), um1 (dashed curve), um2 (dotted curve) and

um3 (dash-dotted curve). For large time, the first and fourth spikes oscillate approximately π radians

out of phase, as do the second and third spikes. In the right figure, we show initial growth and decay

of bamp
j for j = 0 (solid curve), j = 1 (dashed curve), j = 2 (dotted curve) and j = 3 (dash-dotted

curve). The parameters are N = 4, ε = 0.001, f = 0.6, D = 0.0015 and τ = 1.06. The critical value

of τ is τ0(D) = τ03 = 1.084.

Lastly, we illustrate asynchronous oscillations with ε = 0.001 and D = 0.0015. According

to the data in Figure 4(b), we calculate that τ0(D) = τ03 = 1.084, τ02 = 1.098, τ01 = 1.112

and τ00 = 1.118. Taking τ = 1.06, we plot the initial growth of asynchronous oscillations

in Figure 15(a). The form of v3 suggests that the first and fourth spikes oscillate π radians

out of phase as should the second and third spikes, while no spikes oscillate in phase.

This is shown to be approximately the case for large time in Figure 15(b). The initial

growth and decay of the quantities bamp
j , shown in Figure 15(c), demonstrate the reverse

ordering principle of the Hopf bifurcation thresholds predicted by the theory. For large

time, all modes are present, with the j = 3 mode being dominant.

3 Stability of two-spike quasi-equilibria with prescribed boundary flux

In this section, we analyse dynamically triggered instabilities of two-spike quasi-

equilibrium solutions to (1.5). In contrast to the equilibrium case studied in Section 2, for

which the initial pattern was either stable or unstable depending on the ‘tuning’ of the

model parameters, dynamically triggered instabilities occur when a spike pattern, which

is initially stable, eventually undergoes an O(1) time-scale instability that is triggered by

the slow evolution of the spikes. To study this phenomenon, we first construct a two-spike

quasi-equilibrium solution and derive an equation of motion for the O(ε2) slow dynamics

of the spike locations. For the special case of a symmetric two-spike quasi-equilibrium

solution, we then derive an NLEP, which depends on the spike locations, that governs

the stability of this solution. From an analysis of the NLEP we derive criteria for which

a stable quasi-equilibrium solution may become unstable as a result of slow dynamics.

We then present numerical examples illustrating the theory. Since general N-spike quasi-

equilibria and their slow dynamics have been studied in [27] for the original scaling of

the Brusselator model, we omit much of the detail in the analysis of the quasi-equilibrium

solution and its slow dynamics.
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3.1 Construction and slow dynamics of the two-spike quasi-equilibrium solution

We seek a two-spike quasi-equilibrium solution to (1.5) with spikes centred at x1 and x0

with x1 > x0. As in Section 2.1, in each inner region the leading-order solution for v is

v ∼ vqej for j = 0, 1. Then, as in Section 2.1, we solve (1.5a) for u in the inner region of

the jth spike to get

u ∼ 1

fvqej
w(yj) , yj = ε−1(x− xj) , for j = 0, 1 ,

where w(y) is the solution to (2.2). In the outer region u ∼ εE + O(ε2). Then, upon

representing the terms involving u in (1.5b) as delta masses, we proceed as in Section 2.1

and use (2.3) to obtain the outer equation for v, which is

Dvxx + E − 6

f2
(1 − f)

1∑
j=0

δ(x− xj)

vqej
= 0 , −1 < x < 1 ; vx(±1) = ±1 . (3.1)

Upon integrating (3.1) over the interval −1 < x < 1 and applying the boundary conditions,

we calculate that

1∑
j=0

1

vqej
=

(E + D)

3

f2

1 − f
> 0 . (3.2)

For the special case of a symmetric two-spike quasi-equilibrium where x1 = −x0 = α,

then vqe0 = vqe1 ≡ vcqe, where vcqe is given by

vcqe =
6

f2(D + E)
(1 − f) > 0 . (3.3)

Note that due to the presence of boundary flux, the spike amplitudes depend on the

inhibitor diffusion coefficient.

Next, we let v = x2/2 + ν(x) and solve for ν(x) in terms of G, as defined in (2.13). Then

we impose the matching condition that v(xj) = vqej for j = 0, 1. In this way, we obtain

the following result for the quasi-equilibrium solution:

Principal Result 3.1 Let ε → 0 in (1.5) and consider a two-spike quasi-equilibrium solution

with spikes centred at x1 and x0 with x1 > x0. Then the leading-order composite solution

for u is

uqe ∼ εE +
1

fvqe0
w

[
ε−1(x− x0)

]
+

1

fvqe1
w

[
ε−1(x− x1)

]
, (3.4a)

while the leading-order outer solution vqe for v is given by

vqe ∼ ν̄ +
x2

2
+

6

f2
(1 − f)

1∑
j=0

1

vqej
G(x; xj) , (3.4b)
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where G is the Neumann Green’s function defined in (2.13). Here vqe0, vqe1 and ν̄ satisfy the

coupled system consisting of (3.2) and

vqe0 = ν̄ +
x2

0

2
+

6

f2
(1 − f)

(
G(x0; x0)

vqe0
+
G(x0; x1)

vqe1

)
, (3.5a)

vqe1 = ν̄ +
x2

1

2
+

6

f2
(1 − f)

(
G(x1; x0)

vqe0
+
G(x1; x1)

vqe1

)
. (3.5b)

By subtracting the two equations in (3.5), and then using (2.13) for G, we obtain that

vqe0 and vqe1 satisfy

vqe1 − vqe0 = a− b

(
1

vqe1
− 1

vqe0

)
,

1

vqe0
+

1

vqe1
= c , (3.6a)

where we have defined a, b and c, by

a≡ − E

2D
(x2

1 − x2
0) , b ≡ ζ0(x1 − x0) > 0 , c ≡ 1

ζ0

(
1 +

E

D

)
> 0,

ζ0 ≡ 3

Df2
(1 − f) > 0 . (3.6b)

By eliminating vqe0 in (3.6a), we readily derive that

vqe0 =
ξ

c(ξ − 1)
, vqe1 =

ξ

c
, (3.7a)

where ξ is a root of the cubic

K(ξ) ≡ (ξ − 2)(ξ2 − bc2ξ + bc2) + acξ(1 − ξ) = 0 (3.7b)

on the interval ξ > 1.

In discussing the solvability of (3.7) we will consider two cases: Case 1 where x1 = −x0,

and Case 2 where x1 �x0. For Case I, suppose that the initial data is such that x1 = −x0

at time t = 0. Since a = 0, we obtain that (3.7b) has a unique root ξ = 2 when c < 2/
√
b,

and it has three roots ξ = 2 and ξ = ξ± > 1 when c > 2/
√
b, where ξ± is defined by

ξ± =
bc2

2

[
1 ±

√
1 − 4

bc2

]
, for c > 2/

√
b . (3.8)

Therefore, when x1 = −x0, we have a symmetric two-spike quasi-equilibrium solution with

vqe0 = vqe1 = 2/c, and two asymmetric quasi-equilibrium solutions with either vqe0 < vqe1
or vqe1 < vqe0 that exist when c > 2/

√
b. These asymmetric quasi-equilibria arise from a

pitchfork bifurcation at the critical value c = 2/
√
b.

Remark 1 From an analysis of an NLEP in Section 3.2 (see (3.29)), we will show that

the two asymmetric quasi-equilibria for x1 = −x0 and c > 2/
√
b are unstable on an O(1)

time-scale for any τ � 0.
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Next, we briefly consider the generic Case II where x1 � x0, so that a� 0. Then, since

K(1) = −1 < 0 and K → +∞ as ξ → +∞, there is always a root to (3.7b) on ξ > 1.

Therefore, there always exists a two-spike quasi-equilibrium state for any x1 > x0. By

plotting K(ξ), it readily follows that there is a unique root to K(ξ) = 0 when |a| 
 1. For

smaller values of |a| and when bc2 > 4, there can be three quasi-equilibrium states. Since

K(ξ) is a cubic, which therefore has at most two critical points, a sufficient condition for

K(ξ) = 0 to have a unique root on ξ > 1 is that K′(1) < 0. This yields the inequality

bc2 − ac < 1.

Next, we derive the O(ε2) slow dynamics of the spike locations. We introduce the slow

time variable σ = ε2t and retain the next terms in the asymptotic series for the inner

solutions of u and v near xj as

u =
1

fvqej
w(yj)+ εU1j(yj) , v = vqej + εV1j(yj) ; yj = ε−1

[
x− xj(σ)

]
, σ = ε2t . (3.9)

Substituting (3.9) into (1.5), and collecting terms of similar order, we obtain

L0U1j = − ẋj

fvqej
w′ −E− w2

fv2qej
V1j , −∞ < yj < ∞ , U ′

1j → 0 as |yj | → ∞ , (3.10a)

DV ′′
1j = − w

fvqej
+

w2

f2vqej
, −∞ < yj < ∞ , V ′

1j → vqex(x
±
j ) as yj → ±∞ , (3.10b)

where ẋj ≡ dxj/dσ and the operator L0 is defined in (2.28). The limiting condition in

(3.10b) comes from matching the gradients of the inner and outer solutions of v. In

(3.10a), L0 has a one-dimensional kernel with eigenfunction w′. Thus, the right-hand side

of (3.10a) must be orthogonal to w′. This solvability condition yields

− ẋj

fvqej

∫ ∞

−∞
(w′)2 dyj − E

∫ ∞

−∞
w′ dyj − 1

fv2qej

∫ ∞

−∞
w′w2V1j dyj = 0 .

Since w′ is odd and w′w2 = (w3)′/3, we can integrate by parts and use w → 0 as |yj | → ∞
to obtain

ẋj

∫ ∞

−∞
(w′)2 dyj =

1

3vqej

∫ ∞

−∞
w3V ′

1j dyj . (3.11)

Next, we integrate by parts on the right-hand side of (3.11). Using the facts that
∫ yj

0
w3(s) ds

is odd and that, by (3.10b), V1j is even, we calculate that

ẋj

∫ ∞

−∞
(w′)2 dyj =

1

6vqej

∫ ∞

−∞
w3 dyj

[
V ′

1j(∞) + V ′
1j(−∞)

]
. (3.12)

Finally, since
∫ ∞

−∞w
3 dyj∫ ∞

−∞(w′)2 dyj
= 6, we can apply the limiting conditions for V1j in (3.10b) to

reduce (3.12) to

ẋj =
1

vqej

[
vqex(x

+
j ) + vqex(x

−
j )

]
. (3.13)
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To calculate the right-hand side of (3.13), we use (3.4b) and (2.13). In this way, we obtain

the following ODE–differential algebraic equation (DAE) system characterizing the slow

dynamics of x0 and x1:

Principal Result 3.2 Consider the quasi-equilibrium solution (3.4) of (1.5) with spikes

centred at x1 and x0 with −1 < x0 < x1 < 1. Then, for ε → 0, and provided that the

quasi-equilibrium profile is stable to O(1) time-scale instabilities, the spikes drift with speed

O(ε2) according to the asymptotic ODE–DAE system

ẋ0 ∼ 2

vqe0

[
x0 − ζ0

(
x0

vqe0
+

(1 + x0)

vqe1

)]
, ẋ1 ∼ 2

vqe1

[
x1 + ζ0

(
(1 − x1)

vqe0
− x1

vqe1

)]
.

(3.14)

Here vqe0 and vqe1, which depend on x0 and x1, are positive solutions of the nonlinear algeb-

raic system (3.6), while ζ0 is defined in (3.6b).

For the special case of a symmetric two-spike quasi-equilibrium solution with x1 =

−x0 ≡ α and vqe1 = vqe0 = vcqe, we use (3.3) to simplify (3.14). This leads to the following

result:

Principal Result 3.3 Consider the quasi-equilibrium solution (3.4) of (1.5) with spikes

centred at x1 = −x0 ≡ α for 0 < α < 1, for which the spikes have a common amp-

litude, i.e. vqe0 = vqe1 = vcqe. Then, for ε → 0, and provided that the quasi-equilibrium profile

is stable to O(1) time-scale instabilities, the spikes drift with speed O(ε2) according to the

ODE
dα

dt
∼ ε2H(α) ; H(α) ≡ 1

vcqe

[
1 +

E

D
− 2αE

D

]
. (3.15)

Here vcqe, which is independent of the spike locations, is defined in (3.3). The equilibrium

locations of the spikes are at ±αe where H(αe) = 0, which yields

αe =
1

2
+

D

2E
. (3.16)

Due to the imposed boundary flux, these equilibrium locations are not at the symmetry

locations ±1/2 of the no boundary flux system studied previously in Section 2. From (3.16),

we observe that for the equilibrium locations to be inside the domain, we must have D/E < 1.

Since H′(αe) < 0, the equilibrium points of the ODE are always stable.

We limit our study to the parameter range where the inequality D/E < 1 is satisfied.

We note that the symmetric equilibrium is stable under the dynamics (3.15), which was

derived under the assumption that x0 = −x1. That is, the equilibrium (3.16) is stable

only to perturbations that preserve this symmetry. For the equilibrium to be stable to

any perturbation, including to those that break the symmetry, the parameters D, E and f

must satisfy the following condition (cf. [27]):

1 − f

Ef2
<

1

24

E

D

[
1 +

D

E

]3

. (3.17)
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The criterion (3.17), as derived in [27], is the condition that must be satisfied for a

two-spike symmetric equilibrium solution to be stable to eigenvalues of O(ε2).

3.2 Derivation of NLEP

In this section we study the stability of the two-spike quasi-equilibrium solution with

respect to large eigenvalues with λ = O(1) as ε → 0. This is done by first deriving the

NLEP governing the stability on an O(1) time-scale of the two-spike quasi-equilibrium

solution of Principal Result 3.1 associated with (1.5). Since this NLEP has the same form

as in (2.39), differing only in the coefficient of the non-local term, we will only briefly

outline its derivation.

We linearize about the quasi-equilibrium solution of (3.4) by writing u = uqe + eλtΦ and

v = vqe + eλtΨ . Substituting this into (1.5), we then follow the same procedure as used in

(2.17)–(2.39). In place of the vector NLEP (2.29), we obtain that Φ ≡ (Φ0, Φ1)
t satisfies

L0Φ +
w2

fD
VC−1G(μ)

[∫ ∞

−∞

(
Φ − 2

f
wΦ

)
dy

]
= λΦ , (3.18)

where C, the Neumann Green’s matrix G(μ) and the diagonal matrix V are defined by

C = I +
6

f2D
G(μ)V , G(μ) ≡

(
G(μ)(x0; x0) G(μ)(x0; x1)

G(μ)(x1; x0) G(μ)(x1; x1)

)
, V ≡

(
1/v2qe0 0

0 1/v2qe1

)
.

(3.19)

Here G(μ)(x; xj) is the Neumann Green’s function satisfying (2.23).

To obtain two uncoupled scalar NLEPs, we diagonalize C−1 and G(μ) by using the

spectral decomposition of G(μ)V given by

G(μ)V = SΛS−1 , C−1G(μ)V = S
[

I +
6

f2D
Λ

]−1

ΛS−1 , (3.20)

where Λ is the diagonal matrix of the eigenvalues κ̃0 and κ̃1 of G(μ)V. Then, upon

substituting (3.20) and Φ = VSΦ̂ into (3.18), we obtain in place of (2.34) the two

uncoupled NLEPs:

L0Φ̂+ fχ̃jw
2

⎛
⎝

∫ ∞
−∞

(
Φ̂− 2

f
wΦ̂

)
dy∫ ∞

−∞w
2 dy

⎞
⎠ = λΦ̂ , j = 0, 1 ; χ̃j ≡ κ̃j

κ̃j + Df2

6

. (3.21)

Finally, by proceeding as in (2.36) and (2.37) to eliminate one of the non-local terms in

(3.21), we obtain the following result:

Principal Result 3.4 For ε → 0, consider the quasi-equilibrium solution (3.4) of (1.5) with

spikes centred at x1 and x0 with −1 < x0 < x1 < 1. Then the stability of this solution on
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an O(1) time-scale is determined by the spectrum of NLEP,

L0Φ̂− χjw
2

(∫ ∞
−∞wΦ̂ dy∫ ∞
−∞w

2 dy

)
= λΦ̂ , (3.22)

where χj = χj(λ) is defined by

χj ≡ 2χ̃j

[
1 + λ− f

1 + λ− χ̃jf

]
, χ̃j =

κ̃j

κ̃j + Df2

6

, j = 0, 1 . (3.23)

Here κ̃j for j = 0, 1, which also depend on λ, are the eigenvalues of the matrix product

G(μ)V defined in (3.19).

We now analyse this NLEP to derive an instability threshold for a two-spike quasi-

equilibrium solution with arbitrary spike locations x1 > x0. The analysis in Section 3.3

proves that if χj(0) < 1 for either j = 0, 1, then the NLEP in (3.22) has a positive

real eigenvalue for any τ � 0. If χj(0) = 1, then λ = 0 is an eigenvalue of (3.22) with

eigenfunction Φ̂ = w. Furthermore, if χj(0) > 1 for j = 0, 1, then Re(λ) < 0 for τ

sufficiently small. Upon using (3.23), we obtain that the condition χj(0) < 1 is equivalent

to

κ̃j |λ=0 <
Df2

6(1 − f)
. (3.24)

To calculate the two eigenvalues κ̃j of G(μ)V for λ = 0, we expand G(μ) as μ2 → 0, to

obtain that

G(μ) ∼ 1

2μ2

(
1 1

1 1

)
−

(
G(x0; x0) G(x0; x1)

G(x1; x0) G(x1; x1)

)
, (3.25)

where μ2 = τλ/D and G(x; xj) is the Neumann Green’s function of (2.12) with D = 1. By

using (2.13) for G with D = 1, we calculate for μ2 � 1 that

G(μ)V ∼
(

1
2μ2 + 1

6

)
A + D , A ≡

(
1/v2qe0 1/v2qe1

1/v2qe0 1/v2qe1

)
,

D ≡

⎛
⎜⎜⎜⎝

x2
0

2v2qe0

(x2
0 + x2

1)

4v2qe1
− (x1 − x0)

2v2qe1

(x2
0 + x2

1)

4v2qe0
− (x1 − x0)

2v2qe0

x2
1

2v2qe1

⎞
⎟⎟⎟⎠.

(3.26)

To leading order in μ, the eigenvectors vj and eigenvalues κ̃j of G(μ)V are the ei-

genvectors of A. Therefore, for μ2 � 1, we get v0 ∼ (1, 1)t and v1 ∼ (v2qe0,−v2qe1)t. This

shows that κ̃0 → +∞ as λ → 0 so that χ0(0) = 2 > 1. We conclude that the synchronous

mode v0 ∼ (1, 1)t does not generate any instabilities when τ � 1. Alternatively, for the

competition mode v1, we have Av1 = 0 so that κ̃1 = O(1) as μ2 → 0. From a routine

matrix eigenvalue perturbation calculation we calculate for μ2 = τλ/D � 1 that

κ̃1 ∼ vt1Dv1
vt1v1

=
1

2(v4qe0 + v4qe1)

[
(x2

1 − x2
0)

2

(
v2qe1 − v2qe0

)
+ (x1 − x0)

(
v2qe0 + v2qe1

)]
. (3.27)
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By combining (3.27) and (3.24), we obtain an instability criterion for the arbitrary two-

spike quasi-equilibrium solution of Principal Result 3.1.

Principal Result 3.5 The two-spike quasi-equilibrium solution of Principal Result 3.1 is un-

stable on an O(1) time-scale for any τ � 0, when

1

2(v4qe0 + v4qe1)

[
(x2

1 − x2
0)

2

(
v2qe1 − v2qe0

)
+ (x1 − x0)

(
v2qe0 + v2qe1

)]
<

Df2

6(1 − f)
=

1

2ζ0
, (3.28)

where ζ0 is defined in (3.6b). Here vqe0 and vqe1 is any solution to the nonlinear algebraic

system (3.6).

We now use (3.28) to prove for the case x1 = −x0 that the two asymmetric quasi-

equilibrium solutions obtained in (3.8) for c > 2/
√
b are unstable on an O(1) time-scale.

This will establish Remark 1 of Section 3.1. For x1 = −x0, (3.28) implies that we have

instability when

(v2qe0 + v2qe1)

(v4qe0 + v4qe1)
<

1

2ζ0x1
=

1

b
. (3.29)

However, since vqe0 = b/vqe1 when a = 0 in (3.6a), this instability inequality holds when

v2qe1 + b4/v4qe1 > b(v2qe1 + b2/v2qe1). Upon setting y = vqe1/
√
b, this inequality reduces to

showing that y4 + 1/y4 > y2 + 1/y2 for all 0 < y < ∞ with y � 1. Defining z by

z = y2 + 1/y2, for which z > 2 for any y � 1, the inequality y4 + 1/y4 > y2 + 1/y2 is

equivalent to showing the obvious result that z2 − z − 2 > 0 when z > 2. This establishes

Remark 1.

The instability criterion (3.28) can be used together with a numerical simulation of

the DAE system in Principal Result 3.2 to characterize when the slow spike motion, as

predicted by (3.14), ceases to be valid due to the triggering of an O(1) time-scale instability.

Rather than investigating this problem numerically, for the remainder of this section we

will restrict the analysis to the simpler case of symmetric two-spike quasi-equilibria where

x1 = −x0 and vqe0 = vqe1 ≡ vcqe, which is analytically more tractable.

For such a symmetric two-spike quasi-equilibrium solution, then V is a multiple of

a diagonal matrix and G(μ) is a symmetric matrix with constant row sum. Thus, the

eigenvectors of G(μ) are (1, 1)t and (1,−1)t. To calculate the eigenvalues of G(μ) in this

case, we proceed as in [25] and write G(μ) = B−1/μ, where B is given in Section 2 of [25]

as

Bα ≡
(
dα fα
fα dα

)
; dα ≡ coth(2μα) + tanh [μ(1 − α)], fα ≡ − csch(2μα) . (3.30)

Here μ2 = τλ/D is defined in (2.21). The eigenvalues σ0 and σ1 of Bα and the corresponding

eigenvectors v0 and v1 are

σ0 = tanh(μα) + tanh [μ(1 − α)]; v0 = (1, 1)t,

σ1 = coth(μα) + tanh [μ(1 − α)]; v1 = (1,−1)t .
(3.31)

The eigenvalues κ̃j of matrix G(μ)V are then given by κ̃j = 1/(μv2cqeσj), for j = 0, 1.
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In terms of σj , the NLEP in (3.22) corresponding to a symmetric two-spike quasi-

equilibrium solution reduces to the following:

Principal Result 3.6 Let ε → 0 and consider the two-spike symmetric quasi-equilibrium

solution with x1 = −x0 and vqe1 = vqe0 ≡ vcqe, as given in (3.4). The stability of this quasi-

equilibrium solution on an O(1) time-scale is determined by the spectrum of NLEP in (3.22),

where χj is defined by

χj =
2

1 + μσj/β

[
1 +

fμσj

fβ − (1 + λ)
(
β + μσj

)
]
, j = 0, 1; β ≡ (D + E)2f2

6D (1 − f)2
. (3.32)

The discrete eigenvalues of (2.39a) are the roots of the transcendental equations gj(λ) = 0,

where

gj(λ) ≡ Cj(λ) − F(λ) , Cj(λ) ≡ 1

χj(λ)
. (3.33)

Here F(λ) is defined in (2.40), and Cj(λ) is given by

Cj(λ) =
1

2

[
1 + ξj +

fξj

1 + λ− f

]
, ξj ≡ μσj

β
. (3.34)

3.3 Dynamically triggered competition instabilities; symmetric quasi-equilibria

We now calculate a value αc such that the symmetric quasi-equilibrium solution with

spikes at x1 = −x0 ≡ α is unstable to a competition instability when α < αc for τ = 0.

Thus, a competition instability is dynamically triggered if the condition αe < αc < α(0) < 1

holds. For then, α(t) will dip below αc on its approach to its equilibrium state αe. In Section

3.4, we calculate the Hopf bifurcation thresholds as a function of α, analogous to those

calculated in Section 2.4, and we find that dynamically triggered oscillatory instabilities

can also occur.

To determine αc, we look for roots to (3.33) on the positive real axis. The analysis

here is similar to that in Section 2.3. We first consider the case where τ = 0. To find real

positive roots of gj(λ) as τ → 0, we let μ → 0 in (3.31) to obtain ξ0 → 0 and ξ1 → (αβ)−1

as τ → 0. Then, from (3.33) and (3.34), we have C0 = 1/2 < 1 so that the synchronous

mode (1, 1)t is always stable when τ = 0. Here we have used the properties (2.41) for F(λ).

Alternatively, when τ = 0, we have from (3.34) that

C1(λ) =
1

2

[
1 + ξ1 +

fξ1

1 + λ− f

]
, ξ1 ≡ 1/(αβ) . (3.35)

Since C1(λ) is a positive decreasing function of λ while F(λ) has the properties in

(2.41), g1 has a unique positive real root if C1(0) > 1 and no roots if C1(0) < 1. A

winding number argument similar to that used in Section 2.3 can be used to show

that no other roots exist in the right half-plane. This leads to the following stability

criteria:
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Principal Result 3.7 For τ = 0, consider the quasi-equilibrium solution (3.4) to (1.5) with

spikes centred at x = ±α for 0 < α < 1, and where the spikes have a common amplitude.

The solution is stable on an O(1) time-scale if and only if

α > αc; αc ≡ 6D(1 − f)

(D + E)2f2
. (3.36)

If the inequality in (3.36) is reversed, the quasi-equilibrium profile is unstable to one real

positive eigenvalue corresponding to the (1,−1)t mode, which conserves the sum of the amp-

litudes of the spikes. Note that if D � 1 but D 
 O(ε2), we have αc ∼ 6D(1−f)/(E2f2) � 1

so that the region of stability spans almost the entire range 0 < α < 1. Also, from (3.36),

we see that αc ∼ O(D−1) as D → ∞. We remark that the condition α > αc is equivalent to

the condition c > 2/
√
b in the analysis of the quasi-equilibria in (3.8).

As discussed earlier, a symmetric two-spike quasi-equilibrium solution can undergo a

dynamic competition instability whenever αe < αc < 1. By using the expression for αe in

(3.16), we have the following result:

Principal Result 3.8 The quasi-equilibrium solution in (3.4) with a rightmost initial spike

location α(0) satisfying α(0) > αc will undergo a dynamic competition instability at some

time t > 0 when αe < αc < 1. These inequalities hold when

1

12

E

D

[
1 +

D

E

]3

<
1 − f

Ef2
<

1

6

E

D

[
1 +

D

E

]2

. (3.37)

The region described by (3.37) is plotted in Figure 16. Above the dotted curve a

competition instability occurs starting at t = 0 for any α(0), while below the solid curve

the two-spike quasi-equilibrium solution is stable to the large eigenvalues and there is no

competition instability for any α(0) with α(0) > αe.

By comparing the lower bound of (3.37) with (3.17), we conclude that for τ = 0 the

two-spike equilibrium solution is stable if and only if it is stable to the small eigenvalues

in the limit τ → 0. The result is written as follows:

Principal Result 3.9 The symmetric two-spike equilibrium solution in (3.4) with α = αe is

stable with respect to the large eigenvalues but unstable with respect to the small eigenvalues

when

1

24

E

D

[
1 +

D

E

]3

<
1 − f

Ef2
<

1

12

E

D

[
1 +

D

E

]3

. (3.38)

It is stable with respect to the small eigenvalues when (3.17) holds.

For the case τ > 0, it is difficult, owing to the non-monotonicity of the curves Cj(λ),

to obtain explicit results that count the number of positive real eigenvalues in the right

half-plane. However, the following (less precise) results are readily proved.
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Figure 16. The region between the two curves is the parameter space in which a dynamic com-

petition instability is possible for a two-spike pattern with initial state α(0) with αe < α(0) < 1. The

horizontal axis is on the range 0 < D/E < 1 for which a two-spike equilibrium solution exists.

Principal Result 3.10 Suppose that τ � 0 and that 0 < α < αc. Then the NLEP in Principal

Result 3.3 admits at least one real positive eigenvalue. Hence, the quasi-equilibrium pattern

is unstable. Alternatively, suppose that αc < α < 1. Then, for τ > 0 sufficiently large, the

NLEP in Principal Result 3.3 admits four real positive eigenvalues.

To prove the first statement, we note that C1(0) > 1 when α < αc. Therefore, the

curves C1(λ) and F(λ) must have at least one intersection in λ > 0 when τ � 0. To

prove the second statement we note that Cj(0) < 1 when α > αc for j = 0, 1 and that

Cj(λ) = O
(√

τλ
)

for λ > 0 when τ 
 1. It follows from the concavity of Cj(λ) in the large

τ limit and the convexity of F(λ) (see properties (2.41)) that for both j = 0 and j = 1,

there are two intersection points of Cj(λ) = F(λ) on 0 < λ < 5/4.

3.4 Dynamically triggered oscillatory instabilities; symmetric quasi-equilibria

For the parameter range αc < α < 1, we calculate the threshold τ0 for which the NLEP

has a complex conjugate pair of eigenvalues on the imaginary axis. More specifically, we

calculate the values τ = τ0j(α) such that gj = 0 has a pair of complex conjugate solutions

λ = ±iλ0
Ij(α) on the imaginary axis. The quantity

τ0(α) = min(τ00, τ01) (3.39)

is then defined to be the Hopf instability threshold. As in Section 2.4, either the j = 0 mode,

which corresponds to synchronous oscillations, or the j = 1 mode, which corresponds
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Figure 17. Plot of τ0 versus α for various f with E = 1 and D = 0.2 (left), D = 0.4 (centre)

and D = 0.6 (right). The extent of the curves in α increases in f, as does the value of τ0 for any

given α. For α where the curves are solid (dashed), the dominant instability is the synchronous

(asynchronous) mode. The dot denotes the equilibrium location αe; for curves without a dot, a

dynamic competition instability is possible. The values of f are as follows: left figure: f = 0.6181,

0.6494, 0.6808, 0.7121, 0.7434, 0.7747, 0.8060, 0.8374, 0.8687, 0.9000; centre figure: f = 0.6772,

0.7019, 0.7267, 0.7514, 0.7762, 0.8010, 0.8257, 0.8505, 0.8752, 0.9000; right figure: f = 0.6980, 0.7204,

0.7429, 0.7653, 0.7878, 0.8102, 0.8327, 0.8551, 0.8776, 0.9000.

to asynchronous oscillations, can be the dominant instability depending on the value of

α. In contrast, for the GM and GS models studied in [25], the synchronous mode was

always the dominant instability. Using the numerical procedure used to produce the Hopf

bifurcation curves of Section 2.4, we solve gj(iλI ) = 0 to obtain curves τ0j(α) and λ0
Ij(α).

Treating α as the independent variable, we fix D and E and generate Hopf curves for

values of f in the interval fc < f � 0.9, where αc = 1 when f = fc. In Figure 16, this

corresponds to a vertical traversal from the dotted curve down towards the D/E-axis.

Results are presented on a semi-log plot for three ratios of D/E. In Figures 17(a)–(c),

we take E = 1 and D = 0.2, 0.4 and 0.6. Similar plots were made (not shown) for the

same ratios of D/E but with D = 1 and E = 5, 2.5, 1.67, yielding qualitatively similar

plots. For values of α where the curves are solid, the synchronous mode is the dominant

instability (τ0 ≡ τ00), whereas for the portions of the curves where they are dashed, the

asynchronous mode is dominant (τ0 ≡ τ01). The curves are ordered such that for a given α,

τ0(α) increases with increasing f. We end the plot for α < αc, that is, values of α for which

the τ01 curve does not exist; the corresponding complex conjugate imaginary eigenvalues

approach the origin as α → α+
c the same way that λ0

I1 → 0 as D → D−
c2 as discussed in

Section 2.4. The equilibrium location αe is denoted by a dot; in the absence of a dot,

the condition αe < αc is satisfied and a dynamic competition instability is possible. In

Figure 17(a), τ00 and τ01 are almost equal for α sufficiently near unity, and the breaks in

the curves appear to be due to differences in decimal places beyond the precision of the

solver.

For a given α, the quasi-equilibrium is stable (unstable) when τ is below (above) the

curve. Thus, because the spike motion from (3.15) is directed monotonically towards the

equilibrium location, dynamic oscillatory instabilities are only possible when either the

slope of τ0 is negative when α < αe or positive when α > αe. From Figures 17(a)–(c),

we see that for f near fc, the only possibility for a dynamic oscillatory instability is

when the initial spike locations satisfy α(0) > αe and τ satisfies τ0(αe) < τ < τ0(α(0)) (or
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Figure 18. Hopf stability curves for (bottom to top) f = 0.6494, 0.7121 and 0.806. The arrows

indicate the evolution of α(t), while the height of the arrows is only indicative of the value of τ

used in the runs. Runs 1 and 2 are associated with the lowest curve, Run 3 with the middle curve

and Runs 4 and 5 with the top curve. Solid curves indicate that τ0 ≡ τ00 (synchronous mode), while

dashed curves indicate that τ0 ≡ τ01 (asynchronous mode). The curves are cut off on the left at

α = αc. The equilibrium point αe = 0.6 is indicated by a dot when the condition αe > αc is satisfied.

τ0(αc) < τ < τ0(α(0)) if αe < αc), leading to the triggering of synchronous spike oscillations

at some t > 0 as α → α+
e . For larger f, a similar scenario is possible for asynchronous

oscillations. For still larger f, synchronous oscillations may be triggered when the initial

spike location satisfies α(0) < αe. This may occur after passage through a region of

instability to asynchronous oscillations. In the next section, we illustrate these scenarios

by solving numerically the full PDE system (1.5).

3.5 Numerical validation: symmetric quasi-equilibria

We now illustrate five different scenarios involving spike dynamics with parameters used

to generate curves in Figure 17(a). For clarity, we reproduce the curves in Figure 18 on

which we qualitatively annotate the dynamics of α(t) for each run. Below, we present the

results of each run by plotting the spike amplitudes um and spike locations xj versus time,

produced by solving (1.5) with 4,000 grid points using MATLAB’s pdepe() solver. In all

runs, we took ε = 0.005, D = 0.2 and E = 1, with f and τ being varied between the runs.

The initial conditions are treated in the same way as described in Section 2.5, where the

quasi-equilibrium solution in (3.4) is taken as the initial conditions, and a small value of τ

is used to solve forward in time until a true quasi-equilibrium solution is reached. While

the time required for the initiation process is small compared to ε−2, the spikes still drift

during this time. As such, appropriate compensations were made in the initial conditions

so that the spike locations were in their desired locations at the end of the initiation. All

values for the initial spike locations α(0) quoted below refer to their locations at the end

of the initiation.
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Figure 19. Run 1: Dynamic synchronous oscillatory instability for ε = 0.005, D = 0.2, E = 1,

f = 0.6494, τ = 1.05 and α(0) = 0.85. In the left figure, synchronous oscillations of the spike

amplitudes grow in time at the onset of instability and annihilate at some later time. In the right

figure, we show a comparison between the evolution of the spike locations and the dynamics (3.15).

They are indistinguishable in this plot.

In Run 1, we take α(0) = 0.85, f = 0.6494 and τ = 1.05 < τ0(α(0)), so that the quasi-

equilibrium is initially stable at t = 0. However, as indicated in Figure 18, our theory

predicts that a dynamic synchronous oscillatory instability is triggered at some t > 0

when α decreases below the synchronous stability threshold indicated by the solid curve

in this figure. That is, for some time t > 0, the condition τ > τ0(α(t)) is satisfied, at

which time the solution becomes unstable to synchronous oscillations. In Figure 19(a)

we show the amplitudes of the two spikes, which are indistinguishable, after the onset

of the synchronous Hopf instability. The spikes annihilate before α reaches αc, implying

that the annihilation was not due to a competition instability. In Figure 19(b), we show a

favourable comparison between the slow time evolution of the location of the spikes and

the dynamics in (3.15) before the time of annihilation.

With the initial conditions and the other parameters unchanged, for Run 2 we decrease τ

to τ = 0.8 so that the Hopf stability threshold is not crossed at any point in the dynamics.

However, because αe < αc, a competition instability occurs as α(t) decreases below αc. This

scenario is illustrated in Figure 18. In Figure 20(a), we show the annihilation of one of

the spikes after the threshold α(t) < αc is crossed. In Figure 20(b), we show a favourable

comparison between the numerical spike dynamics and that predicted by (3.15) up to the

time of annihilation of the right spike. After the annihilation, the remaining spike evolves

according to the one-spike dynamical result of [27].

In Run 3, we keep τ unchanged but increase f to f = 0.7121 so that αc < αe and

τ remains below τ0(α) for all values of α in the interval (αe, α(0)). Thus, no dynamic

instabilities occur, and the spikes evolve monotonically to their equilibrium locations

at αe = 0.6. The motion of the spikes, along with the dynamics (3.15), are shown in

Figure 20(c).
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Figure 20. Runs 2 and 3: The left and centre figures (Run 2) are plots of the spike amplitudes and

locations versus time in the case of a dynamic competition instability for ε = 0.005, D = 0.2, E = 1,

f = 0.6494, τ = 0.8 and α(0) = 0.85. In the right figure (Run 3), f is increased to f = 0.7172 so that

no instabilities are triggered and the spikes approach the equilibrium location αe = 0.6.

In Run 4, we take α(0) = 0.91, f = 0.806 and τ = 15 < τ0(α(0)). This run is similar

to Run 1 except that a dynamic asynchronous instability is triggered instead of a syn-

chronous instability. This scenario is shown in Figure 18; for some t > 0, α(t) will satisfy

τ > τ0(α(t)), initiating an asynchronous instability. In Figure 21(a) we show asynchron-

ous spike amplitude oscillations resulting from the triggering of an asynchronous Hopf

instability. As in Run 1, the spikes annihilate at some time after onset but before α has

reached αc, implying that the annihilation was not due to a competition instability. In

Figure 21(b), we show a favourable comparison between the slow spike dynamics before

the annihilation event and the one predicted by (3.15). For this run, we perturbed the

initial condition as in (2.63), where d0 = 1 and d1 = −1 in accordance with the eigen-

vector associated with the asynchronous mode. While the perturbation initially decayed

and appeared to be unnoticeable by the time the spikes approached the asynchronous

instability threshold, enough of the initial perturbation remained to trigger the asynchron-

ous instability. Without the initial perturbation, a synchronous instability developed due

to the nearby synchronous instability threshold (not shown in Figure 18).

In Run 5, we keep the parameters as in Run 4, except we set α(0) = 0.28 and τ = 6.6,

so that τ > τ0(α(0)) = τ01. Thus, the solution starts above the asynchronous stability

threshold but gains stability as α(t) increases towards αe. However, before reaching αe,

a loss of stability to synchronous oscillations occurs before stability is regained after

α(t) drifts across the zone of synchronous instability. The evolution through the zones

of stability and instability is depicted in Figure 18. In Figures 22(a) and (b), we show

the spike amplitudes and locations versus time for the entire duration of dynamics.

Note that the spikes evolve according to (3.15) even when α(t) is in an unstable region.

Figure 22(a) shows the triggering of two distinct types of instabilities, each of which are

eventually extinguished as time increases. The first of these instabilities, as previously

mentioned, is to the asynchronous mode and is magnified in Figure 22(c). The initial

conditions were perturbed in the same way as in Run 4. After an initial growth in

the amplitude of asynchronous oscillations, the spike amplitudes approach their quasi-

equilibrium value as they move into the zone of stability. At a later time, shown in

Figure 22(d), the spikes move into a zone of synchronous instability where the amplitude
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Figure 21. Run 4: Dynamic asynchronous oscillatory instability for ε = 0.005, D = 0.2, E = 1,

f = 0.806, τ = 15 and α(0) = 0.91. In the left figure, asynchronous oscillations of the left (solid)

and right (dashed) spike amplitudes grow in time at the onset of instability and annihilate at some

later time. In the right figure, we show a comparison between the evolution of the spike locations

and the dynamics (3.15) up to the time of annihilation.

of synchronous oscillations grow. These oscillations decay as the spikes move out of

the unstable region and towards their equilibrium locations. Note that the frequency of

synchronous oscillations is approximately four times that of the asynchronous oscillations,

which is consistent with our calculations (not shown). In other experiments, it was observed

that starting too far above the asynchronous stability curve led to an annihilation of one

of the spikes. Further, the movement of the spikes through a zone of instability without

annihilating may be facilitated by ε sufficiently large; for small ε where the time spent in

unstable regions is significantly longer, annihilation events may occur.

Finally, we note that all of these experiments involve only O(1) instabilities. For

numerical computations involving instabilities to O(ε2) eigenvalues, see [27].

4 Discussion

We have analysed the stability of localized spike patterns for two closely related singularly

perturbed RD systems with Brusselator kinetics. The derivation of the NLEP for the

Brusselator is more intricate than in previous stability analyses of spike patterns for the

GM and GS models [12,30,32] owing to the non-trivial background state for the activator

and the existence of two non-local terms arising from the O(ε−1) coefficient in (1.3b) and

(1.5b). A combination of rigorous and numerical analysis was used to obtain stability

thresholds from this NLEP, and the results have been confirmed with full numerical

simulations of the PDE systems. For (1.5), an NLEP stability theory is applied to a quasi-

steady, two-spike evolution, and our results show the existence of dynamically triggered

instabilities depending on the parameter regime.

For both Brusselator models (1.5) and (1.3), our NLEP stability results show that as

τ increases above a threshold, a Hopf bifurcation triggers either a synchronous or an
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Figure 22. Run 5: Synchronous and asynchronous instabilities for ε = 0.005, D = 0.2, E = 1,

f = 0.806, τ = 6.6 and α(0) = 0.28. The top left figure shows the spike amplitudes as the spikes

move through zones of stability and instability and eventually to their equilibrium locations (top

right). The first instability is to the asynchronous mode (bottom left) and the second instability

is to the synchronous mode (bottom right). In the bottom left figure, the solid (dashed) curve

is the amplitude of the left (right) spike. In the bottom right figure, the spike amplitudes are

indistinguishable.

asynchronous oscillation in the spike amplitudes. The nature of the oscillation depends

on the parameter values of f and D, and for (1.5), also on the inter-spike distance.

Our full numerical simulations of the PDE systems confirm the two modes of oscillation.

Furthermore, our numerical results suggest that the synchronous instability, which leads to

the annihilation of spikes, is subcritical, while the asynchronous instability is supercritical.

The existence of robust asynchronous spike amplitude oscillations observed in our analysis

of the Brusselator model has not been reported in NLEP stability studies of other RD

systems (cf. [12, 32]).

A key open problem, suggested by our results, is to perform a weakly nonlinear theory

on the Brusselator model, and on related RD systems with spike solutions, to analyse

whether spike amplitude oscillations are subcritical or supercritical.
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Figure 23. Self-replication of a pulse for (1.3) with ε = 0.01, A = 0, D = 0.02, f = 0.95 and

τ = 0.001. The solid curve is u, while the dotted curve is v.

Another interesting open problem is to try to extend the pulse-splitting analysis of

[4, 13, 16] to analyse a similar pulse-splitting phenomena for the Brusselator model (1.3)

that occurs in the regime when f approaches unity. Starting from a one-pulse quasi-

equilibrium state, in Figure 23 we show numerical results computed from (1.3) for the

parameter set ε = 0.01, A = 0, D = 0.02, f = 0.95 and τ = 0.001. Such a pulse-splitting

behaviour has not been reported previously for the Brusselator model.

A final open problem is to analyse (1.3) in a two-dimensional spatial domain, where loc-

alized spot patterns undergo either self-replication, competition or oscillatory instabilities

depending on the parameter regime. The determination of phase diagrams in parameter

space for these instabilities is critical for characterizing dynamic bifurcations of localized

spot patterns.
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Appendix A Scaling analysis of the Brusselator model

In this appendix we outline the scaling analysis of [27] for the existence of spikes to (1.2).

For ε0 → 0, U has an inner scale Uinn near a spike and an outer scale Uout away from
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a spike. In contrast, V has only one scale across the interval, which is induced by the

boundary feed so that V = O(A0). In order to obtain a homoclinic solution characterizing

the spike profile, we require in the inner region near a spike that U2
innV ∼ Uinn. Therefore,

Uinn = O
(
A−1

0

)
.

Next, since U is localized, we require from (1.2b) that DVxx ∼
∫ 1

−1 VU
2 dx. Since the

integrand has an O(ε0) support near a spike, this yields that A0 ∼ ε0/A0, which implies

that A0 = O(ε
1/2
0 ). Consequently, we conclude that Uinn = O(ε

−1/2
0 ) and Vinn = O(ε

1/2
0 ).

Finally, from (1.2b) we must balance the scales of DVxx and BU across −1 < x < 1,

which yields that Uout = O(ε
1/2
0 ), and consequently E0 = O(ε

1/2
0 ) from (1.2a).

Therefore, we will consider (1.2) in the parameter regime where A0 = ε
1/2
0 A0 and

E0 = ε
1/2
0 E0 for some non-negative O(1) constants A0 and E0. We also give an alternate

scaling for the A0 = 0 case.

Firstly, we introduce the rescaled O(1) variables u and v and the new temporal variable

σ, defined by

U = ε
−1/2
0 ucu , V = ε

1/2
0 vcv , t = Tσ .

From (1.2), we then obtain the system

1

T (B0 + 1)
uσ =

(
ε0√
B0 + 1

)2

uxx +
ε0E0

uc(B0 + 1)
− u+

ucvc

B0 + 1
vu2 , (A.1a)

√
B0 + 1

u2
cT

vσ =
D0

√
B0 + 1

u2
c

vxx +

√
B0 + 1

ε0

(
B0

ucvc
u− vu2

)
. (A.1b)

Choosing T = 1/(B0 + 1) and ucvc = B0 in (A.1), and defining the new parameters ε, D,

E, f and τ as

ε ≡ ε0√
B0 + 1

, D ≡ D0

√
B0 + 1

u2
c

, E ≡ E0

uc
√
B0 + 1

, f ≡ B0

B0 + 1
,

τ ≡ (B0 + 1)3/2

u2
c

,

(A.2)

we obtain the system

uσ = ε2uxx + εE − u+ fvu2 , −1 < x < 1 , ux(±1, σ) = 0 , (A.3a)

τvσ = Dvxx +
1

ε

(
u− vu2

)
, −1 < x < 1 , vx(±1, σ) = ±A0/vc , (A.3b)

valid for A0 � 0. If A0 > 0, we choose vc = A0 so that uc = B0/A0. Replacing the time

variable σ with t in (A.3), the Brusselator model with asymptotically small boundary feed

of the inhibitor is written in the form (1.5) where σ is replaced by t, and ε, f, E, D and τ

are defined in terms of the original variables by (1.6).

Alternatively, if A0 = 0, we may choose uc = E0/
√
B0 + 1, so that vc = B0

√
B0 + 1/E0,

resulting in the parameter E in (A.2) and (A.3) being unity. In this case the Brusselator

model with no flux boundary conditions is (1.3), where ε, f, D and τ are as defined in

(1.4).
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