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Abstract Super-diffusive front dynamics have been analysed via a fractional analogue of

Allen-Cahn equation. One dimensional kink shape and such characteristics as slope at origin

and domain wall dynamics have been computed numerically and satisfactorily approximated by

variational techniques for a set of anomaly exponents 1 < γ < 2. The dynamics of a two dimen-

sional curved front has been considered. Also, the time dependence of coarsening rates during

the various evolution stages was analysed in one and two spatial dimensions.
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1 Introduction

Reaction – diffusion equations govern numerous physical, chemical and biological sys-

tems [1, 2]. A characteristic feature of these systems is the multiplicity of stationary so-

lutions and consequent existence of domain walls and fronts separating different states.

An important distinction is that of fronts between locally stable states ( e.g. interfaces

developing due to phase separation ) and fronts describing a replacement of an unstable

state by a stable one ( e.g. propagation of chemical reactions ) [3, 1].

In the case of a reaction – diffusion equation for a single component

∂tu = ∇2u+ f(u), (1)

the spatially homogeneous stationary states are determined by the zeros ui of f(u),
while their stability depends on the sign of f ′(ui). Applications of equation (1) in-

clude kinetics of phase transitions and chemical reactions. Paradigmatic examples of

reaction – diffusion equations are Allen-Cahn equation [4] with f(u) = u(1 − u2),
describing domain walls between two stable states ( u1 = 1 and u2 = −1 ), and

Fisher-Kolmogorov equation [5, 6] with f(u) = u(1 − u), describing front propaga-

tion into an unstable state. Dynamics governed by (1) is characterised by the existence
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of Lyapunov functional

F{u(x)} =

∫

Rd

(
1

2
(∇u)2 − U(u)

)
dr, f(u) = U ′(u), (2a)

so that
dF

dt
= −

∫

Rd

(
∂u

∂t

)2

dr 6 0. (2b)

There exist physical systems subject to abnormally fast diffusion that can be de-

scribed by means of a non-Gaussian random walk with algebraically decaying jump

length distribution, also known as Lévy flight. Typical examples are wave turbulence

[7], transport in porous media [8] and forage trajectories of animals [9]. For grounds,

limitations and examples of such processes see review [10] and book [11]. Super-

diffusion due to Lévy flights has been associated with reactive systems and transition

between equilibrium states quite a while ago. An essential progress has been made re-

cently in understanding the dynamics of pulled super-diffusive fronts propagating into

an unstable state [12, 13, 14]. Fronts separating stable phases in systems with super-

diffusion have been revealed studying transitions with long range interactions [15],

vacancy diffusion and domain growth in binary alloys [16] and domain wall pinning

by lattice defects [17].

The last example has touched on the topic of curvature reduction and coarsening of

domain walls between competing phases ( first modelled in [4] and known as Allen-

Cahn mechanism ) and associated that phenomenon with the time dependent Ginsburg-

Landau equation. Still, to the authors knowledge, fronts between locally stable phases

in systems with super-diffusion have not been studied systematically.

In the present paper a super-diffusive generalisation of (1) is considered

∂tu = D
γ
|x|u+ f(u), (3a)

where

D
γ
|x| = −

(
−∇2

)γ/2
, 1 < γ < 2, (3b)

is the fractional Laplacian, obtained as the macroscopic limit of Lévy type random

walk [10]. A fractional analogue of Allen-Cahn equation is studied with the competing

stable phases having an identical Lyapunov functional density. In section 2 the structure

of motionless one dimensional domain wall between the phases is investigated. Section

3 is devoted to interaction of domain walls and simulation of the coarsening process. In

section 4 a curved wall between the phases is considered, and finally competing stable

phases of different Lyapunov functional values are studied in section 5.

2 Stationary solutions

A one dimensional fractional analogue of Allen-Cahn equation is analysed as the sim-

plest model entailing diffusion anomaly effects on the phase separation transition

∂tu = D
γ
|x|u+ u(1− u2), D

γ
|x| = − sec(πγ/2)

2Γ(2− γ)

d2

dx2

∫ ∞

−∞
− [ · ]

|x− ξ|γ−1
dξ. (4)
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2.1. Variational formulation

In order to evaluate the solutions of (4) it is useful to consider the following variational

formulation. Define

Υ(t) =

∫ ∞

−∞
U(x, t)dx, U(x, t) =

1

4
(1− u2)2 − sec(πγ/2)

2Γ(2− γ)
×

(
∂u

∂x

∂

∂x

∫ ∞

−∞
− u(ξ)

|x− ξ|γ−1
dξ +

u

2

∫ ∞

−∞
− ∂2u/∂ξ2

|x− ξ|γ−1
dξ

)
. (5)

Then the first variation ( denoted by δ ) yields

δΥ = −
∫ ∞

−∞
(Dγ

|x|u+ u− u3)δu dx, (6a)

∂tu = −δU

δu
= D

γ
|x|u+ u− u3. (6b)

Hence any solution of (4) will decay asymptotically to a stationary solution by

∂tΥ =

∫ ∞

−∞

δU

δu
∂tu dx = −

∫ ∞

−∞
(∂tu)

2
dx < 0. (7)

Hereinafter the properties of such stationary solution are investigated.

2.2. Tail asymptotics

A brief summary of the basic properties of a normal stationary front u(x) is brought

for future comparison with the anomalous case. An exact solution of

u′′ + u(1− u2) = 0 (8)

is given by

u(x) = s tanh
x− x0√

2
, (9)

with s = ±1 and x0 arbitrary. Later on the values s = 1 and x0 = 0 are chosen so that

u(x) is odd. Since u(∞) = 1, at x ≫ 1 u = 1+ ũ, |ũ| ∼ o(1), where to leading order

the tail ũ satisfies the linear equation

ũ′′ − 2ũ = 0, (10)

solved as

ũ = c1e
x
√
2 + c2e

−x
√
2. (11)

Computing the deviation of (9) from the value at infinity,

ũ(x) ∼ −2e−x
√
2, x → ∞. (12)

The asymptotics at x → −∞ are similar as u(x) is odd. The tail decay law is one of the

front major characteristics, and as will be shown below, with the presence of anomaly

it changes its nature from exponential to algebraic.
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For the anomalous stationary front equation

D
γ
|x|u+ u(1− u2) = 0 (13)

no exact solution is known, still it is possible to consider an odd solution satisfying

u(±∞) = ±1. It is expected that the essential change of u(x) takes place in the region

|x| ∼ O(1), whereas at |x| ≫ 1 u(x) tends to ±1 asymptotically. The behaviour at

|x| ∼ O(1) is treated in the next subsection. Hereby the tail asymptotics is sought by

linearisation of (13) with u = 1 + ũ, |ũ| ∼ o(1), satisfying

D
γ
|x|ũ− 2ũ = 0, x ≫ 1. (14)

q → ρ eiθq → w/(ε−i x)

Figure 1: Modified integra-
tion path.

To find Green’s function for the operator D
γ
|x| − 2 the right-

hand side of (14) is replaced by Dirac δ function

D
γ
|x|ũ− 2ũ = δ(x), (15)

and it is asserted that at infinity Green’s function asymptotics co-

incides with that of the solution of (14) owing to the properties

of δ function. Application of Fourier transform and rearranging

yields

F ũ (q) = − (2 + |q|γ)−1
. (16)

Bearing in mind that large x asymptotics corresponds to small q in Fourier space, (16)

is expanded accordingly during Fourier transform inversion:

ũ(x) = − 1

2π

∫ ∞

−∞

eiqx

2 + |q|γ dq ∼ − 1

4π
lim
ǫ→0

∫ ∞

−∞
eiqx−ǫ|q|

(
1− 1

2
|q|γ +O(|q|2γ)

)
dq =

−1

2
δ(x) +

1

4π
lim
ǫ→0

∫ ∞

0

e−ǫq cos(qx)
(
qγ +O(q2γ)

)
dq. (17)

To evaluate the main contribution

I(x; ǫ) = ℜ
∫ ∞

0

eq(ix−ǫ)qγdq (18)

a closed integration path is constructed ( figure 1 ): along the arc q = ρ exp(iθ) with

R ∋ ρ → ∞, θ ∈ [0 arctan(x/ǫ)], and along the closing radius q = w/(ǫ − ix) with

w ∈ R. As the integrand of I(x; ǫ) is regular,

lim
ρ→∞

{∫ ρ

0

eq(ix−ǫ)qγdq + iργ+1

∫
arctan(x/ǫ)

0

eiθ(γ+1)eρ(ix−ǫ) exp(iθ)dθ+

(ǫ− ix)−(γ+1)

∫ 0

ρ

e−wwγdw

}
= 0. (19)
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The integral along the arc is estimated as

∣∣∣∣∣

∫
arctan(x/ǫ)

0

eiθ(γ+1)eρ(ix−ǫ) exp(iθ)dθ

∣∣∣∣∣ =
∣∣∣∣∣

−i

ρ(ix− ǫ)

∫
arctan(x/ǫ)

0

eiθγ d eρ(ix−ǫ) exp(iθ)

∣∣∣∣∣ 6

1

ρ
√
x2 + ǫ2

(
eρ(ix−ǫ) exp(iθ)

)∣∣∣
arctan(x/ǫ)

0
,

vanishing under the limit ρ → ∞. Hence

ũ(x) ∼ p̃x−(γ+1) +O(x−(2γ+1)), p̃ = − sin(πγ/2)

4π
Γ(γ + 1). (20)
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)

Figure 2: Comparison of asymptotic de-
cay law (23) ( straight line ) with the
numerical solution of (13).

Note also that functional (5) is convergent for func-

tions of such asymptotics. In order to construct an ap-

proximation for the profile u(x) in the entire domain

−∞ < x < ∞ a shifted function v = u − 1 is defined.

Substituting into (13) yields

D
γ
|x|v − 2v = 3v2 + v3. (21)

Neglecting the detailed behaviour of v(x) in the rela-

tively thin region |x| ∼ O(1), the right-hand side of (21)

is approximated by

D
γ
|x|v − 2v ≈ 4θ(−x), (22)

with θ(x) being Heaviside step function. Differentiation

with respect to x and comparison to (15) yields v′(x) ∼ −4ũ(x) at x ≫ 1. Returning

to u(x),

u(x) ∼ 1− 4

∫ x

∞
ũ(ξ)dξ ∼ 1 + p x−γ , p = − sec(πγ/2)

2Γ(1− γ)
, x ≫ 1. (23)

Thus for an anomalous front an algebraic decay as γ-th power at infinity replaces the

normal exponential one. Figure 2 compares asymptotics (23) with the numerical solu-

tion of (13), corresponding to a kink-antikink pair in a large domain. The deviation of

the kink tail from the theoretical prediction at large distances from the kink center is

caused by transition to the region where the second kink is situated.

2.3. Solution at x ∼ O(1)

In order to calculate u(x) for arbitrary values of x the variational formulation of the

problem is used. Given the correct behaviour at infinity, an approximation is sought

to the solution of (13) by minimisation of the time independent version of (5) through

trial functions. For a set of values 1 < γ < 2 the functional was computed with three

kinds of trial functions combined with the algebraic tail: a simple polynomial, a sum

of sines and an odd polynomial:

up(x) =

{
ax+ bx2 + cx3 0 < x < ℓ

1 + px−γ x > ℓ
(24a)
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us(x) =

{
a sin

(
x
ℓ

)
+ b sin

(
2x
ℓ

)
+ c sin

(
3x
ℓ

)
0 < x < ℓ

1 + px−γ x > ℓ
(24b)

uop(x) =

{
ax+ bx3 + cx5 0 < x < ℓ

1 + px−γ x > ℓ .
(24c)

In all cases u(−x) = −u(x). The functions us and uop possess smooth derivatives at

the origin, whereas up(x) has a discontinuous second derivative. As is shown later, up

is a good approximation despite this discontinuity. For Υ to exist the parameters a, b, c
are chosen so that u ∈ C2 on (0,∞). The principal value integrals in (5) are regularised

accordingly in each case, and Υ(ℓ; γ) is computed and minimised with respect to the

juncture point x = ℓ.
The computation of Υ(ℓ; γ) is somewhat cumbersome, yet involves no special tech-

nique, and hence is not presented here. The resulting form is identical for all three

functions:

Υ(ℓ; γ) =
4∑

j=0

Kj(γ)ℓ
1−jγ , (25)

with Kj being γ−dependent constants. Differentiating with respect to ℓ yields

dΥ

dℓ
= ℓ−4γ

4∑

j=0

Kj(1− jγ)ℓ(4−j)γ , (26)

for which two positive roots are found: ℓ → ∞ and one root of the fourth degree

polynomial, with the latter being the only minimum.

Figure 3 depicts the tails for a set of values of γ. It is seen that at γ close to normal

the kink is steeper, whereas with further diminution of γ it is smoothed out. Away from

the kink the deviation from the normal profile grows monotonously ( and non-linearly )

as γ decreases. The main difference between profiles obtained via trial functions of

different types is the kink steepness: note that profiles generated by functions us (24b)

and uop (24c) are somewhat steeper for γ close to unity than those due to up (24a) ( for

instance scrutinise the distance along the x-axis where the value u = 0.96 is reached ).

With diminution of γ these differences become indistinct.

Equation (13) was also solved numerically by a pseudo-spectral code. Figure 4

compares the profiles obtained by the functional minimisation and direct numerical

solution. Surprisingly, the solution with the lower degree polynomial trial function is

the best evaluation of the three.

Figure 5 compares the functional value at the found minimum for the three trial

functions and the numerical solution. Again, the third degree polynomial with its dis-

continuity in the second derivative at the origin gives a better result than the other two

functions over most values of γ.

2.4. Validity of tail asymptotics

During the course of estimation of the front tail asymptotics the contribution of the

kink core to the value of the decay constant p was neglected. To validate this step a

posteriori a direct estimate is performed with the approximate solution up(x) (24a).
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(a) Trial function up(x) (24a)
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(b) Trial function us(x) (24b)
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(c) Trial function uop(x) (24c)

Figure 3: Anomalous front profile tails.

The integration domain of D
γ
|x| in (14) is divided into two sets |ξ| < ℓ and |ξ| > ℓ.

Omitting the prefacing factor,

D
γ
|x|up(x) =

d2

dx2

(∫

|ξ|<x

up(ξ)dξ

(x− ξ)γ−1
+

∫

|ξ|>x

up(ξ)dξ

|x− ξ|γ−1

)
. (27)

To compare the core and tail contributions x > ℓ is taken ( with ℓ ∼ O(1) being the

juncture point between them, as determined by the functional minimisation ) and the

integrals in (27) are evaluated directly. The first integral consists of contributions of

the inner |ξ| < ℓ and outer ℓ < |ξ| < x sets, whose respective magnitude is ( after

differentiation ) O(x−(γ+2)) and O(x−γ). The contribution of the second integral is

consistently O(x−γ). Therefore the impact of the front core on the tail asymptotics is

negligible at order (−γ), and the constant p in the asymptotic decay law (23) is correct

to that order. The effect of non-locality of D
γ
|x| will manifest itself at order −(γ + 2).
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(b) Trial function us(x) (24b)
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(c) Trial function uop(x) (24c)

Figure 4: Deviation of variationally and numerically obtained front profiles. The dotted curves
show the deviation of the numerical solution for γ = 2 and the analytical profile ( machine zero )

u(x) = tanh(x/
√
2).
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Figure 5: Upper: functional value for up ( (24a), dashed ), us ( (24b), solid ), uop ( (24c), dash-
dotted ) and the numerical solution ( dotted ) versus the anomaly exponent γ; lower: functional
value difference relatively to the numerical solution for up ( dashed ), us ( solid ) and uop ( dash-
dotted ).
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2.5. Anomaly dependent properties

Figure 6(a) depicts the front slope at the origin versus the anomaly exponent γ. For

up (24a) the kinks become slightly less steep as γ decreases. The phenomenon is even

more significant for uop (24c), whereas for us (24b) the general trend is opposite. The

slope of the normal profile is
√
2/2, so the curves can be considered upper and lower

bounds for the slope of the true profiles.

Figure 6(b) shows the quantity
∫∞
−∞ u′2dx versus γ, corresponding to the inverse

domain wall mobility ( equalling 2
√
2/3 ≈ 0.943 for the normal profile ). See the

next section for details. The difference between the curves of up (24a) and us (24b) is

practically independent of γ. On the other hand, uop (24c) gives similar values for γ
close to normal, but for decreasing γ its deviation becomes more significant.

Both the slope at origin and the inverse domain wall mobility are approximated

best by up (24a), the lowest degree polynomial entailing a convergent functional.

1.1 1.4 1.7 2

0.5

0.6

0.7

0.8

γ

u
’(
0

)

(a) Front slope at origin u′(0)

1.1 1.4 1.7 2
0.65

0.75

0.85

0.95

γ

∫ −
∞

∞
 u

’2
 d

x

(b) Inverse wall mobility
∫
∞

−∞
u′2dx

Figure 6: Front properties versus anomaly exponent for up ( (24a), dashed ), us ( (24b), solid ),
uop ( (24c), dash-dotted ) and the numerical solution ( dotted ).

3 Dynamics of an ensemble of domain walls

In the course of phase segregation a number of domain walls are formed. The dynamics

of an ensemble of domain walls in the case of normal Allen-Cahn equation was studied

in [19, 20]. On late stages the coarsening is logarithmic, corresponding to the expo-

nentially weak overlap of domain wall tails determined by the law (12). The present

section is devoted to the dynamics of domain wall governed by (13).

9



3.1. Dynamics of a pair of domain walls

−1

0

1

ξ
1
(t) ξ

2
(t)

x

u

Kink interaction

Figure 7: Kinks interaction.

Consider two kinks moving in opposite directions, as in fig-

ure 7. A non-stationary correction satisfying

∂tu = D
γ
|x|u+ u− u3 (28)

is sought by

u = u0(x− ξ1)− u0(x− ξ2)− 1 + ũ, |ũ| ≪ 1, (29)

where u0(x) is the solution of (13). Applying the shift v :=
u − 1 and defining vj(x) = (−1)j−1u0(x − ξj) − 1, j =
{1, 2},

v = v1 + v2 + ṽ, |ṽ| ≪ 1 (30)

and should satisfy

∂tv = D
γ
|x|v − 2v − 3v2 − v3. (31)

Defining a variable θ = x − ξ1, |θ| ≪ 1 about the core of the left kink, substituting

(30) into (31) and neglecting all higher order terms according to

v1 ∼ O(1), |∂tv1| ≪ 1, D
γ
|x|vj − 2vj − 3v2j − v3j = 0, (32a)

v2 ∼ −p(ξ2 − x)−γ ∼ o(|v1|), ∂tv2 ∼ o(|v2|), (32b)

yields

(
D

γ
|x| − 2− 6v1 − 3v21

)
ṽ(x) = −u′

0(x− ξ1)
dξ1
dt

+
(
6v1 + 3v21

)
v2(x), (33)

or(
D

γ
|θ| − 2− 6v1 − 3v21

)
ṽ(θ) = −u′

0(θ)
dξ1
dt

+
(
6v1(θ) + 3v21(θ)

)
v2(θ), (34)

with v1(θ) = u0(θ)− 1 and v2(θ) = −u0(θ + ξ1 − ξ2)− 1. The left-hand operator is

self-adjoint, and the homogeneous adjoint problem

(
D

γ
|θ| − 2− 6v1 − 3v21

)
ṽc(θ) = 0 (35)

possesses a solution ṽc(θ) = v′1(θ) = u′
0(θ) since by (32a)

(
D

γ
|θ| − 2− 6v1 − 3v21

)
v′1(θ) = 0. (36)

Thus by Fredholm alternative the solvability condition of (34) is

∫ ∞

−∞
u′
0
2
(θ)dθ

dξ1
dt

=

∫ ∞

−∞

[
3
(
v21(θ)

)′
+
(
v31(θ)

)′]
v2(θ)dθ. (37)

Recognising

K =

∫ ∞

−∞
u′
0
2
(θ)dθ (38)
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as the inverse domain wall mobility, integrating by parts and applying the boundary

conditions,
dξ1
dt

= − 1

K

∫ ∞

−∞

(
3v21(θ) + v31(θ)

)
v′2(θ)dθ. (39)

To obtain an approximation of (39),

3v21 + v31 ≈
{

0 x− ξ1 ≫ 1
4 ξ1 − x ≫ 1

, (40)

giving

dξ1
dt

≈ 4

K

∫ −∞

0

v′2(θ)dθ ∼ α

K
(ξ2 − ξ1)

−γ , α = −4p > 0 (41)

and similarly
dξ2
dt

∼ − α

K
(ξ2 − ξ1)

−γ . (42)

Figure 8 compares (39) integrated with variational (24a) and numerical profiles with

asymptotics (41) and a direct numerical simulation of two kinks motion by (4). The

differences between various computations emanate from the non-negligible deviation

of the front core in the conforming profiles, as mobility is an integral property, yet the

power law exponent is captured quite well for the entire range 1 < γ < 2.

γ slope

1.96 2.0
1.76 1.8
1.56 1.6
1.36 1.4
1.16 1.2

1.2 1.35

−3

−1

log (ξ
2
−ξ

1
)

log ξ
1
′

 

 
γ=1.96
γ=1.76
γ=1.56
γ=1.36
γ=1.16

Figure 8: Evaluation of dξ1/dt by numerical integration of (39) with variational u0(θ) = up(θ)
( solid ) and numerical ( dotted ) profiles, compared on a logarithmic scale with asymptotics (41)
( dashed ) and a direct numerical simulation of the motion of two kinks by (4) ( dash-dotted ). The
approximate power law exponents are brought in the table ( absolute values ).

3.2. Dynamics of multiple domain walls

Equation (13) was solved numerically by means of a pseudo-spectral code with time

integration in Fourier space, using Crank-Nicholson scheme for the linear operator and

11



0 500 1000
−1

0

1

x

u

0 500 1000
−1

0

1

u

0 500 1000
−1

0

1

u

Figure 9: Coarsening of a system of multiple kinks for γ = 1.
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Figure 10: Coarsening rates of a system of multiple kinks for several values of γ.

Adams-Bashforth scheme for the non-linear one. Coarsening of a system of multiple

kinks in a large domain was studied with periodic boundary conditions and random

initial data. Snapshots of the coarsening kinks are shown in figure 9 for γ = 1.

The coarsening rates were measured for several values of γ by counting the number

of zeros N of the function u(x, t). The results of runs with random initial data are

brought in figure 10. Two regimes are evident: (i) the initial regime corresponds to a

linear growth of the initial data and formation of a system of kinks, as described by the

linearised version of (13) that gives N ∼ t−1/γ ; (ii) the crossover to kink annihilation

and system coarsening. Indeed, the exponents presented in the figure are close to 1/γ
during the first part of the evolution, and the coarsening exponents are close to 1/(2γ).
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4 Two dimensional front properties

4.1. Analytical prediction

X

Y

O(1/ε)

z

h(X)

u
−

u
+

Figure 11: Curved front inner
layer.

In a space of dimension d equation (4) becomes [21]

∂tu = D̃
γ
|x|u+ u(1− u2),

D̃
γ
|x|u(x, t) = −Cd,γ/2

∫

Rd

u(x, t)− u(ξ, t)

|x− ξ|d+γ
dξ, (43a)

where

D̃
γ
|x| = −

(
−∇2

)γ/2
, Cd,α =

22αΓ(d/2 + α)

πd/2|Γ(−α)| . (43b)

Suppose a two dimensional space consists of regions with u ≈ −1, u ≈ 1 and a

transition between them in the form of a curved front, so that the front width is small

and its radius of curvature is large compared to the size of the stable phases regions

( figure 11 ). Slow spatial variables X = ǫx, Y = ǫy will describe the front as an inner

layer, whose velocity of order O(ǫ) in the original variables now becomes O(ǫ2). Thus

a slow temporal variable is T = ǫ2t.
A detailed derivation appears in appendix A. To leading order the solution is

u0(X, z, T ) = upf (Z), Z =
z√

1 + h2
X

, (44)

with upf being the plane front (13) stretched by the arc length of the curve h(X). The

correction equation is

((
1 + h2

X

)γ/2
D̃

γ
|z| + 1− 3u2

0

)
u1 = −hTu0z + γ

(
1 + h2

X

)γ/2−1
×

(
hX∂−1

z D̃
γ
|z|u0X +

hXX

2 (1 + h2
X)

(
1 + (γ − 1)h2

X

)
∂−1
z D̃

γ
|z|u0

)
, (45)

and the conforming solvability condition is given by

K hT =
1

2
γM

hXX

1 + h2
X

,

K =

∫

R

u0
′2(Z)dZ, M = −

∫

R

u0(Z)D̃γ
|Z|u0(Z)dZ. (46)

The normal velocity vn and the front curvature κ

vn =
hT√
1 + h2

X

, κ = − hXX

(1 + h2
X)

3/2
, (47)

then satisfy

b vn = −κ, (48a)
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with

b =
2K

γM
= − 2

γ

〈u0′(Z), u0′(Z)〉
〈u0(Z), D̃γ

|Z|u0(Z)〉
(48b)

and

K vn = −1

2
γMκ. (48c)

Note that for normal diffusion ( γ = 2 ) b = 1.

4.2. Numerical simulation

By (48c), a circular spot with u = 1 for r > R(t) and u = −1 for r < R(t) will

collapse so that R2(t) = R2
0 − αt with α = const. Numerical solution of (43) with

an initial condition corresponding to a circular spot allowed to measure the collapse

rate directly. Figure 12 presents the collapsing spot at several time instants for γ = 1.5
and the quantity R2(t; γ), depending linearly on time in accordance with (48c) ( see

comparison of numerical and analytically predicted values of α in the table ).

Results of a numerical solution of (43) with γ = 1.5 and random initial data are

depicted in figure 13(a). During the early stage of the evolution a domain structure is

formed, followed by a gradual coarsening until a single spot remains and collapses.

The average size of the structure was computed as

〈L〉 = 1

2
(〈Lx〉+ 〈Ly〉) , 〈Lη〉 =

LD

Np

∑

η

1

Nη
, (49)

with 〈Lη〉 being the structure size in direction η, Nη - the number of zeros in that direc-

tion, LD - the domain length ( square ) and Np - the number of division points. Figure

13(b) shows the curves 〈L〉(t) for several values of γ. During the domain structure for-

mation 〈L〉 ∼ t1/γ , followed by the crossover to the domain coarsening slightly slower

than 〈L〉 ∼ t1/2 and similar for all γ. At the very late stage, when there is only one

spot left, there is a slight acceleration of coarsening to the rate 〈L〉 ∼ t1/2 for all γ.

5 Phases with distinct Lyapunov functional densities

The specific feature of model (1) is the energetic equivalence of the phases u± = ±1,

characterised by the equal densities of Lyapunov functional

U(u) = −1

4

(
1− u2

)2
. (50)

Since U(u+) = U(u−), a flat domain wall between the phases is stationary. Consider

another potential U(u) with two stable states U ′(u+) = U ′(u−) = 0, U ′′(u±) > 0
such that U(u+) > U(u−). Then according to (2b), the front between u+ and u− will

move so that the state u+ will oust the state u−. Propagation of the front with constant

velocity is governed by the function u = u(z), z = x− ct, satisfying

D
γ
|z|u+ c

du

dz
+ U ′(u) = 0 (51)
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αnum αth

γ = 2.0 2.04 2.0
γ = 1.5 3.14 3.22
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Figure 12: A circular spot collapse: time evolution for γ = 1.5 ( upper, left to right ) and R2(t; γ)
( lower ). For collapse rate α(γ) see the table.

(a) Coarsening field for γ = 1.5: initial do-
main structure formation (A); intermediate
coarsening stages (B-C); latest coarsening
stage – a single collapsing spot (D).
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(b) Coarsening rates for several values of
γ.

Figure 13: Two dimensional coarsening properties.
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with the boundary conditions u(∓∞) = u±. As an example, consider the potential

U(u) = −1

4

(
1− u2

)2
+ ǫµu, 0 < ǫ ≪ 1, 0 < µ ∼ O(1) (52)

and the domain wall solution

u(x, t) = u0(x− ξ(τ)) + ǫu1(x) + o(ǫ2), τ = ǫt. (53)

Substituting (52) and (53) into (3a) and collecting terms of order O(ǫ0),

D
γ
|x|u0 + u0 − u3

0 = 0. (54)

Hence u0 is the stationary domain wall solution of the fractional Allen-Cahn equation

discussed previously. At order O(ǫ) a non-homogeneous equation is obtained:

D
γ
|x|u1 + (1− 3u2

0)u1 = µ+ ∂xu0
dξ

dτ
. (55)

The solvability condition ( orthogonality of the right-hand side to the homogeneous

problem solution ∂xu0 ) gives

K
dξ

dτ
= −2µ (56a)

with

K =

∫

R

(∂xu0)
2
dx (56b)

being the inverse domain wall mobility. Relation (56) holds also for a domain wall

with u(∓∞) = u±.

For a pair of interacting domain walls of different sign the following conditions are

obtained ( see section 3.1. )

K
dξ1
dτ

= −2µ+ α(ξ2 − ξ1)
−γ , (57a)

K
dξ2
dτ

= 2µ− α(ξ2 − ξ1)
−γ , (57b)

with α constant. Such a pair describes a nucleus for a preferable phase u ≈ u+ in the

sea of the phase u = u− ( in the case µ > 0 ). If the distance between the domain walls

is

ξ2 − ξ1 = ℓ∗ =

(
α

2µ

)1/γ

, (58)

the nucleus boundaries are motionless ( critical nucleus ). Obviously, the critical nu-

cleus is unstable: if ℓ < ℓ∗, the attracting force prevails and the nucleus disappears;

otherwise it grows.

In the case of a curved front the velocity of the plane front ±2µ/b is added to the

curvature flow velocity, hence (48c) becomes

K vn = −1

2
γMκ+ 2µ, (59)

where the normal is directed from the preferred phase with the lower Lyapunov density

towards the phase with the higher one.
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6 Conclusion

A fractional analogue of Allen-Cahn equation was formulated as a possible model for

phase separation transition in media giving rise to super-diffusion of Lévy flight type.

The equation can be obtained by a functional variation, and time dependent solutions

decay to a stationary solution. Motivated by the normal tanh profile properties, odd

stationary front-like solution was sought for different values of γ.

The variational formulation was utilised to generate the front profiles for three trial

functions: a third degree polynomial, a sum of sines and a fifth degree odd polyno-

mial, smoothly connected with an algebraically decaying tail, whose asymptotics were

determined by Fourier transform method. The corresponding functional values and

such global properties as slope at origin and wall mobility were compared with a direct

numerical solution, rendering the third degree polynomial the best fit of the three.

The influence of diffusion anomaly on the dynamics of domain walls was anal-

ysed for plane and curved fronts between states with identical and different Lyapunov

densities. In particular, a γ-dependent relation between the front normal velocity and

curvature was formulated, generalising the expressions known for normal diffusion.

The effect on the coarsening phenomenon was predicted in the case of plane fronts,

and the approach velocity of adjacent kinks was shown to be a power law of their dis-

tance. Simulations with random initial data in one and two spatial dimensions revealed

the coarsening rates at the various evolution stages: t1/γ during formation of domain

structures followed by kink or spot annihilation as t1/2. A simulation with the spe-

cial initial condition of a circular spot yielded a good accordance of numerical and

theoretical results.

Thus, the introduction of a non-local diffusion operator has resulted in (i) a power

law description of a plane front tail and approach velocity of two kinks rather than a

normally exponential function; (ii) γ-dependent global properties such as front slope

at the origin, domain wall mobility and coarsening rates for plane fronts, and propor-

tionality factor between a curved front normal velocity and curvature.
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A Inner layer equations of a curved front

Rewriting (43a) with the slow variables X = ǫx, Y = ǫy, T = ǫ2t, and denoting

Ξ = ǫξ, H = ǫη,

ǫ2uT (X,Y, T ) = −ǫγ+1C2,γ/2

∫

R2

[u(X,Y, T )− u(Ξ, H, T )]dΞdH

[(X − Ξ)2 + (Y −H)2]
(2+γ)/2

+ u− u3.

(A1)
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Defining the inner layer coordinate z = (Y − h(X,T ))/ǫ and correspondingly ζ =
(H − h(X,T ))/ǫ,

ǫ2
(
uT − 1

ǫ
hTuz

)
= −ǫγ+1C2,γ/2× (A2)

∫

R2

[u(X,Y, T )− u(Ξ, H, T )]dΞdH

[(X − Ξ)2 + (h(X,T )− h(Ξ, T ) + ǫ(z − ζ))2]
(2+γ)/2

+ u− u3.

Since X −Ξ ∼ O(ǫ) and h(X,T )− h(Ξ, T ) ∼ O(ǫ), define Ξ−X = ǫξ and expand

h(X,T )− h(Ξ, T ) ∼ −ǫhX(X,T )ξ − 1

2
ǫ2hXX(X,T )ξ2 +O(ǫ3), (A3a)

u(X, z, T )−u(Ξ, ζ, T ) ∼ u(X, z, T )−u(X, ζ, T )−ǫuX(X, ζ, T )ξ+O(ǫ2). (A3b)

Now

ǫ2uT − ǫhTuz = −C2,γ/2×
∫

R2

[u(X, z, T )− u(X, ζ, T )− ǫuX(X, ζ, T ) +O(ǫ2)]dξdζ
[
ξ2 + (−hXξ + z − ζ − 1

2ǫhXXξ2 +O(ǫ2))2
](2+γ)/2

+ u− u3. (A4)

The problem to leading order

−C2,γ/2

∫

R2

[u0(X, z, T )− u0(X, ζ, T )]dξdζ

[ξ2 + (−hXξ + z − ζ)2]
(2+γ)/2

+ u0 − u3
0 = 0 (A5)

reduces to

(
1 + h2

X

)γ/2
D̃

γ
|z|u0 + u0 − u3

0 = 0, u0 = u0(X, z, T ), (A6)

where D̃
γ
|z| ( a single dimensional version of (43b) ) is equivalent to the fractional

operator defined in (4). Due to the property D
γ
|z|f(z) = δγDγ

|δz|f(δz) equation (A6)

is solved as

u0(X, z, T ) = upf

(
z√

1 + h2
X

)
(A7)

with upf being the plane front (13). Retaining terms of order O(ǫ) in (A4),

−ǫhT uz =
(
1 + h2

X

)γ/2
D̃

γ
|z|u+u−u3+

ǫC1,γ/2 hX

(1 + h2
X)

1−γ/2

∫

R

uX(X, ζ, T )sγ(ζ)dζ−

ǫC2,γ/2(γ + 2)hXX

2 (1 + h2
X)

2−γ/2

∫

R2

u(X, z, T )− u(X, ζ, T )
(
1 + ξ̃2

)2+γ/2

(
ξ̃2(1− 2h2

X) + h2
X

)
sγ(ζ)dξ̃dζ,

(A8a)

sγ(ζ) =
sign(z − ζ)

|z − ζ|γ , ξ̃ =
1 + h2

X

|z − ζ| ξ − hXsign(z − ζ). (A8b)
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Scrutiny of the first integral on the right-hand side allows to write

I1 := −C1,γ/2

∫

R

uX(X, ζ, T )sγ(ζ)dζ =

C1,γ/2

∫

R

(uX(X, z, T )− uX(X, ζ, T )) sγ(ζ)dζ, (A9)

with subsequent differentiation yielding

I1 = γ ∂−1
z D̃

γ
|z|uX(X, z, T ). (A10)

Completing the integration over ξ̃ in the second integral gives

I2 := C2,γ/2

∫

R2

u(X, z, T )− u(X, ζ, T )
(
1 + ξ̃2

)2+γ/2

(
ξ̃2(1− 2h2

X) + h2
X

)
sγ(ζ)dξ̃dζ =

γ

2 + γ

(
1− 2h2

X + (1 + γ)h2
X

)
∂−1
z D̃

γ
|z|u(X, z, T ). (A11)

Substituting u = u0 + ǫu1 + O(ǫ2) into (A8a) and extracting the problem for
u1, ((

1 + h2
X

)γ/2
D̃

γ
|z| + 1− 3u2

0

)
u1 = −hTu0z + γ

(
1 + h2

X

)γ/2−1
×

(
hX∂−1

z D̃
γ
|z|u0X +

hXX

2 (1 + h2
X)

(
1 + (γ − 1)h2

X

)
∂−1
z D̃

γ
|z|u0

)
. (A12)

Differentiating (A6) with respect to z gives the homogeneous solution u1hom =
∂zu0. Hence by Fredholm alternative a solution for u1 exists if the right-hand
side of (A12) is orthogonal to u1hom. A few auxiliary identities to be used are

〈∂zu0, ∂zu0〉 =
(
1 + h2

X

)−1/2
∫

R

u0
′2(Z)dZ, Z = z

(
1 + h2

X

)−1/2
, (A13a)

〈∂zu0, ∂
−1
z D̃

γ
|z|u0〉 = −〈u0, D̃

γ
|z|u0〉, (A13b)

〈∂zu0, ∂
−1
z D̃

γ
|z|u0X〉 = −1

2

∂

∂X

(
u0D̃

γ
|z|u0

)
. (A13c)

Equality (A13b) ensues by partial integration and asymptotics of D̃
γ
|z|u0 =

u0(u
2
0 − 1) ∼ |z|−γ at infinity due to (13). Equality (A13c) follows since D̃

γ
|z| is

self adjoint. Defining

K :=

∫

R

u0
′2(Z)dZ, M := −

∫

R

u0(Z)D̃γ
|Z|u0(Z)dZ, (A14)

the solvability condition of (A12) is given by

K hT =
1

2
γM

hXX

1 + h2
X

. (A15)
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Introducing the normal velocity vn and the front curvature κ

vn =
hT√
1 + h2

X

, κ = − hXX

(1 + h2
X)

3/2
, (A16)

it is found that
b vn = −κ, (A17a)

where

b =
2K

γM
= − 2

γ

〈u0′(Z), u0′(Z)〉
〈u0(Z), D̃γ

|Z|u0(Z)〉
(A17b)

and

K vn = −1

2
γMκ. (A17c)
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[21] Bogdan K, Kulczycki T and Kwaśnicki M 2008 Estimates and structure of α-
harmonic functions Probab. Theory Relat. Fields 140 345–381

21


