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ON ACCURACY OF NUMERICAL SOLUTION TO BOUNDARY VALUE

PROBLEMS ON INFINITE DOMAINS WITH SLOW DECAY

Kyle Booker1 and Yana Nec1

Abstract. A numerical approach is developed to solve differential equations on an infinite domain,
when the solution is known to possess a slowly decaying tail. An unorthodox boundary condition relying
on the existence of an asymptotic relation for |y| ≫ 1 is implemented, followed by an optimisation
procedure, allowing to obtain an accurate solution over a truncated finite domain. The method is
applied to −(−∆)γ/2u − u + u

p = 0 in R, a non-linear integro-differential equation containing the
fractional Laplacian, and is easily expanded to asymmetric boundary conditions or domains of a higher
dimension.

Mathematics Subject Classification. 45K05, 37M99.

The dates will be set by the publisher.

Introduction

The numerical approach developed herein is suitable for a differential equation of any type on an infinite
domain, bar perhaps a singular perturbation, provided an asymptotic approximation exists for each slowly
decaying tail. To introduce the method and report accuracy results thereon, it is chosen to focus on a particular
equation of substantial complexity that involves the fractional Laplacian and a non-linear source. Therefore an
overview is in order on the challenges associated with fractional operators as well as this specific equation.

Differential operators of an arbitrary order, historically named fractional, are a generalisation of the common
integer order operators [19]. Numerous applications require these operators to model transport processes that
cannot be faithfully described by integer order differential equations [13, 20]. The complexity of fractional
operators is such that advances in pure theory as well as analytical insight into specific problems are relatively
scarce and far between [1, 4, 8]. Often the crux is the failure of fractional derivatives to satisfy basic properties
expected from a derivative. Thus whilst an integer derivative is a single undisputed notion, there are many
types of fractional ones adapted for different purposes. Classical definitions include the Grünwald-Letnikov
generalisation of the Riemann sum, its continuum equivalent the Riemann-Liouville integral and a particular
case thereof with an infinite lower integration bound, the Weyl derivative [19]. The first is best known for
giving proper limits at all integers, i.e. when the order tends to an integer, the corresponding integer operator
is recovered. The second is the most convenient in analytical problems, nonetheless rarely tractable. Both
operators possess no spectrum and the constant functions are not in the kernel. Some variants, where the kernel
contains the constant functions, are Caputo and Elliot derivatives [7]. The Weyl derivative is the only fractional
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one to possess a spectrum and is instrumental in forming the fractional Laplacian operator, whose kernel also
contains the constant functions.

Numerical treatment of these operators has proven challenging on many levels. The fractional derivative
is essentially a convolution integral with a singular kernel. Familiar discretisation techniques yield unintuitive
accuracy and stability characteristics. An example of unexpected accuracy properties is the first order ap-
proximation of the Crank-Nicholson method due to the fractional operator solely, as compared to the second
order for classical derivatives. For a space-fractional advection – dispersion equation both explicit and implicit
Euler schemes and Crank-Nicholson scheme, based on Grünwald discrete formula for the fractional operator,
are unconditionally unstable [17]. Moreover, grid refinement rendered the scheme inconsistent, i.e. the numer-
ical solution did not converge to the exact one. To resolve the problem an optimal for that equation shifting
of the Grünwald formula was found to yield a consistent and stable scheme. Another interesting example is
an asymmetric discretisation of the fractional operator giving more accurate results, when the operator order
parameter was far enough from the value corresponding to the non-fractional equation [16]. The important
inference of these studies is that a fractional equation is likely to require a custom treatment.

Fractional equations over infinite domains are a wide class of equations, whose solutions are known to
exhibit slowly decaying tails, e.g. algebraic or logarithmic [22]. These might emerge not only when the natural
domain associated with a problem is infinite, but for instance as an inner solution in a matched asymptotic
expansions approach [18]. An immediate concern is the application of boundary conditions at infinity and
domain truncation. For example, fronts [6, 23] or spikes [18] with Lévy flights as the underpinning diffusion
mechanism, are produced by equations containing −(−∆)γ/2, 1 ! γ < 2, and have algebraic tails decaying
as |y|−(γ+1). When γ = 2, the operator is the regular Laplacian and the tail decay is exponential. Both the
front and spike solutions have a very narrow region of interest, where most of the changes in function value and
gradient are located. However, with γ = 2 a domain length of 20 results in function value on the order O

(
10−9

)
,

whereas for γ = 1.5 it is O
(
10−2

)
. This simple calculation calls forth the inference that applying a Dirichlet or

Neumann boundary condition at the end points of the interval will entail a solution with a grossly distorted tail
and is bound to affect the core region of interest. Some of these effects were studied in [6]. Although numerous
equations involving the fractional Laplacian or operators of equivalent complexity have been solved numerically
with different degrees of success, from linear [14, 15] to non-linear [18], virtually no results are reported on the
possible distortion due to misapplied boundary conditions. In [18] the questionable accuracy of the numerical
solution due to the slow tail decay was mentioned, but not duly analysed.

The numerical error unwittingly introduced due to a truncated domain might exceed by several orders of
magnitude the error guaranteed by the solution scheme itself, when the solution decay at infinity is too slow to
perform the computation on a sufficiently large domain. The proposed method to control the error is applied
to the example equation

D
γ
|y|u− u+ up = 0, 1 < γ < 2, (1a)

with the conditions

u(±∞) = 0, u(y) > 0, u(y) = u(−y). (1b)

The non-linearity parameter p satisfies p > 1. The integer order counterpart of (1a) is

u′′ − u+ up = 0 (1c)

with the same boundary conditions. The operator Dγ
|y| is the fractional Laplacian in one dimension

D
γ
|y|f(y) = −

sec(πγ/2)

2Γ(2− γ)

d2

dy2

⎧
⎨

⎩

y∫

−∞

f(ξ) dξ

(y − ξ)γ−1
+

∞∫

y

f(ξ) dξ

(ξ − y)γ−1

⎫
⎬

⎭ =
sec(πγ/2)

2Γ(−γ)
−
∞∫

−∞

f(y)− f(ξ)

|y − ξ|γ+1
dξ, (2a)

Fronts decay as 
|y|^{-\gamma}, the
estimate is for 
that.
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or for Fourier transformable functions defined for any y ∈ Rn as

Fy $−→q

{
− (−∆)γ/2f(y)

}
= −|q|γFy $−→q{f(y)}, 1 ! γ ! 2. (2b)

The first equality in (2a) is a sum of two Weyl derivatives, whereas the second integral makes it obvious the
constant functions are in the kernel of this operator.

Equation (1a) attracts a general interest and belongs to a wide class of investigated fundamental non-linear
problems [3, 5, 9, 21], but also surfaces as an auxiliary equation in specific problems such as the Gierer-
Meinhardt system, where it represents a localised reactant concentration – a spike [18]. For brevity hereunder
the solution to (1) will be referred to as such. The existence, uniqueness and boundedness of solutions to (1a)
as a generalisation of (1c) has been studied for quite some time in more than one spatial dimension and for
parameters (p, γ) in a wider range than required for specific problems, cf. the seminal work [8] and references
therein. The solution to (1c) is known in closed form for all p:

u(y) =

{
p+ 1

2
sech2

(
p− 1

2
y

)}1/(p−1)

, (3a)

however for (1a) only one exact solution is available for (p, γ) = (2, 1):

u(y) =
2

1 + y2
. (3b)

The tail in (3a) decays exponentially, whilst in (3b) the decay is algebraic. In a phase plane the orbit (3a) is a
homoclinic, whereas (3b) is referred to as a ground state solution. In [18] it is proved that

u(y) ∼ a(p, γ) y−(γ+1) ∀ 1 ! γ < 2. (4)

Thence it follows that the limit γ −→ 2− is improper: regardless of how close to 2 the anomaly index γ is, the
tail will never approach an exponential decay and the function shape will not converge to (3a). On the other
hand, the limit γ −→ 1+ is proper, whereby (3b) can gauge the capability of different numerical schemes.

A numerical solution of (1a) was attempted in [18] with only partial success due to the aforementioned error
source. With γ = 2 it is sufficient to prescribe u = 0 at the end points, because the tail decay is exponential.
However, a similar application for an algebraically decaying tail cannot work well, since for no reasonable
interval will the tail decay close to machine zero at the ends. The proposed mending of the tail discretising
u′(y) ∼ −(γ + 1)u(y)/y based on the asymptotic relation (4) met with difficulties. One, implementing this
only at the last two (first order) or three (second order) points yielded unviable solutions. An untraditional
implementation over a significantly larger part of the tail improved the result, yet the error magnitude could
not be estimated, because it was unclear how to determine the portion of the tail, where this condition would
be implemented. In particular, because u′ < 0 ∀ y > 0, the values of u at the tail would become negative if
the mending point was too close to the spike centre, whereas non-smooth profiles ensued if it was not close
enough. Moreover, counter-intuitively the error was exacerbated for γ values in the range 1.75 " γ < 2, where
the tail decay is in fact faster. Clearly a sound error control scheme is required in order to obtain a trustworthy
solution, regardless of the actual numerical scheme being used.

To summarise, in boundary value problems with slowly decaying functions on infinite domains a significant
error is introduced when traditional boundary conditions are implemented, regardless of the numerical solution
scheme in use. The distortion diffuses into the domain and affects even solutions, whose region of interest
is relatively narrow. A visual example of the extent of this phenomenon is given in figure 1. The current
contribution offers a generic method to control this error source.



4 TITLE WILL BE SET BY THE PUBLISHER

0 10
0

maxu

0 300

−0.5

0

y y

∆
u
/u

u
(y
)

Figure 1. Spike solution with (solid) and without (dashed) tail error control for p = 2 and
γ = 1.5 (left) and relative error of the two (right). u(−y) = u(y).

1. Tail conditions

The core numerical scheme is briefly outlined here for convenience and the reader is referred to [18] for further
technical detail. At the limit ϵ −→ 0 and D −→ ∞ the system

ut = ϵγDγ
|y|u− u+

up

v
, (5a)

τovt = D vyy − v+
up

ϵ
, (5b)

possesses a steady state that is the sought solution to (1a). Relying on (2b) simplifies the numerical treatment
of the fractional Laplacian operator, circumventing two main issues: kernel singularity and truncation of the
infinite integration domain. Thus the system

dû

dt
= −

(
ϵγ |q|γ + 1

)
û+ F

{
up

v

}
, (6a)

τo
dv̂

dt
= −

(
D q2 + 1

)
v̂+ F

{
up

ϵ

}
, (6b)

where the hats denote Fourier transformed quantities, is integrated in time using the Euler scheme, with the
linear and non-linear terms discretised by the Crank-Nicolson and Adams-Bashforth methods respectively. The
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Figure 2. Tail condition implementation points marked on the tail of the ground state solution
for p = 2, γ = 1. Abscissa scale shown as a fraction out of N , the number of mesh points and
Fourier wavelengths.

initial condition is an interpolation of (3a) and (3b) for the relevant (p, γ) pair. Due to the slow decay of the
sought function at infinity, the classic boundary condition on a truncated domain must be replaced with a tail
condition. Such a replacement requires painstaking analysis. The two possibilities considered are discussed
hereinafter.

1.1. Tail condition based on u and u′

The asymptotic relation (based on (4))

u′ ∼ −(γ + 1)
u

y
y −→ ∞ (7a)

was discretised to first order using the forward difference operator

u(xj+1) = u(xj)

(

1−
γ + 1

j −N/2

)

(7b)

and second order with backward difference

u(xj+2) =
2u(xj+1)− u(xj)/2

3/2 + (γ + 1)/(j −N/2)
, (7c)
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Figure 3. Sliding window histogram of raw values of a(p, γ) for p = 2, γ = 1 and tail condition
implementation points as in figure 2.

where N is the number of mesh points as well as wavelengths in the Fourier transform. Equation (4) implies
that lnu is linear for y ≫ 1, but there is no analytical way to determine a(p; γ). Part of the problem is that
for any sensible set of parameters ϵ ≪ 1, D ≫ 1, τo and N the linearity is always recovered, however the value
a(p; γ) varies significantly. Relying on the exact solution (3b), both schemes were tested to seek a sound way to
determine the point, where the tail condition must be implemented. Common numerical integration parameters
are listed in appendix A. Scheme (7c) did not improve the overall accuracy attained. Hence, unless expressly
stated, the results below refer to (7b).

The working assumption was that the correct solution would not be sensitive to the numerical scheme
parameters and result in a smooth dependence a(p, γ). To this end a sliding window histogram of the obtained
a(p, γ) values was constructed. Figures 2 and 3 depict a typical set of tail condition points and corresponding
histogram. For this example problem the histogram is bimodal, and moreover the peaks are quite close in height,
rendering the availability of an exact solution crucial. Starting with the known value a(2, 1) = 2, the correct
peak is tracked as p and γ vary. If the numerical scheme yields a correct solution, the histogram peak evolution
is gradual and a(p, γ) is smooth in both arguments. Figure 3 also allows to infer the accuracy of a(p, γ) as two
significant digits. One must bear in mind that a(p, γ) is a derived quantity (least squares fit to a straight line
of lnu), not a direct output of the numerical scheme with its expected discretisation error. In conjunction with
the fractional Laplacian – as any singular integro-differential operator over an infinite domain – being the main
source of error in this problem, the fact that the higher order tail scheme did not improve the accuracy of a(p, γ)
is not overly surprising. The finiteness of D and ϵ in system (5) also contributes error, since the sought ground
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Figure 4. Area A(p, γ) =
2π/ϵ∫

−2π/ϵ

u(y; p, γ)dy for p = 2. Diamond marks the improper limit

lim
γ−→2−

A(p, γ), asterisk marks the value A(p, 2).

state is a limit solution with D −→ ∞ and ϵ −→ 0. Furthermore, since the effective domain is |y| < 2π/ϵ, the
errors due to the fractional Laplacian integral truncation and the finiteness of ϵ are interconnected. Figure 4
shows a quantitative measure of this error through the area under the obtained solutions. The worst error is
expected for the slowest decaying function, i.e. p = 2 and γ = 1. The integral over R of (3b) equals 2π (see also
appendix B), whereas for ϵ = 0.01 used in all computations

2π/ϵ∫

−2π/ϵ

2 dy

1 + y2
= 4arctan

(
2π

ϵ

)
≈ 6.27682. (8)

From figure 4 the numerically obtained value is 6.273 to three decimal places, whereby the error estimate is on
the order of magnitude of 10−3. Thus it will be consistent to deem a(p; γ) accurate to second significant figure.
An additional feature of interest in figure 4 is the improper limit γ −→ 2. For p = 2, γ = 2 the integral over R
of (3a) equals 6 and is obtained to machine handling precision with the parameters in appendix A, whilst for
γ −→ 2− the diamond mark shows the limit just slightly under 2π value. The gap is therefore larger than the

range of A(p, γ) =
2π/ϵ∫

−2π/ϵ

u(y; p, γ)dy. This calculation quantifies the disparity between exponential and algebraic

decay, substantiating the conundrum of implementing boundary conditions in the latter situation.
The optimal tail condition implementation point, to wit one yielding a correct numerical solution, is related

to the comparative decay rate of an algebraic tail versus the exponential one. From a painstaking scrutiny of
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Figure 5. First positive root of u(y; p, γ) − u(y; p, 2) = 0 versus the correct tail condition
implementation point for p=2,3,4,5 respectively from top curve to bottom. The anomaly index
γ parameterises each curve right to left varying 1 ↗ 2−.

overlaid ground states and the homoclinic (3a) in figures 7 and 8 the following intriguing observation is gleaned:
the optimal point is directly related to the root to the equation u(y; p, γ)− u(y; p, 2) = 0. In fact there are two
such roots in R+, and the statement is correct with respect to either. Figure 5 depicts the typical dependence
for several values of p. Note the functions are constant to the precision of two significant digits indicated for
a(p; γ).

1.2. Tail condition based on u, u′ and u′′

The asymptotic relation (4) was used to infer that

u′′ +A
u′

y
+B

u

y2
∼ 0, B = (γ + 1)(A− γ − 2) (9a)

and A an arbitrary constant of a commensurate order of magnitude. Since u′ < 0 ∀ y > 0, whereas u > 0 and
u′′ > 0, the inclusion of u′′ was exptected to aid in avoiding artificially negative values due to an overestimation
of the tail decay rate. Discretising to first order using the forward difference operator yields

u(xj+2) = u(xj+1)

(

2−
A

j −N/2

)

− u(xj)

(

1−
A

j −N/2
+

B

(j −N/2)2

)

, (9b)
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Figure 6. Relative error of numerical solutions with tail conditions based upon schemes (7b)
(thin black), (7c) (thick black), (9b) (thin grey/green), (9c) (thick grey/green), and the true
solution, equation (3b), for p = 2, γ = 1.

and similarly to second order with central difference

u(xj+2) =
u(xj+1)

(
2−B/(j −N/2)2

)
− u(xj)

(
1−A/(2j −N)

)

1 +A/(2j −N)
. (9c)

Here in addition to the analysis performed for the first derivative schemes (7), a range of values 1 ! A ! 50 was
tested, recovering the same results and thereby confirming the correctness of obtained ground state solutions
for the entire range 1 ! γ < 2 and 2 ! p ! 5.

A quantitative comparison of numerical solutions with the exact solution in the most extreme Lévy flights
case for all foregoing schemes is given in figure 6. For this case the tail decay is the slowest, hence the error
is the largest for any fixed p. As is seen from the error magnitude, all four tail discretisations yield similar
accuracy. The error shape is typical for the developed approach: the error is minimal at the spike peak (y = 0),
small and virtually constant at the tail (y ≫ 1) and maximal in the vicinity of the point, where the tail
condition is implemented. Amongst other things, this vindicates the introduction of the tail condition instead
of a traditional boundary condition, as well as the significant part of the domain, where it must be applied. If the
implementation interval is insufficient, the error continues to increase toward the boundaries of the domain due
to premature or belated decay, begetting dearth of positivity, smoothness, monotonicity or any subset thereof.
The reason second order schemes (7c) and (9c) are not markedly more accurate than the first order ones, (7b)
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and (9b), stems from the fact the main source of error in this problem is the fractional Laplacian term in (1a)
and concomitant Fourier forward and inverse transforms. Since the tail condition continues the obtained core
solution, the tail accuracy is not given by the nominal scheme accuracy.

2. Results

Figures 7 and 8 show the function u(y; p, γ) for p = 2 and p = 5 respectively for representative values of γ
in the range of Lévy flights 1 ! γ < 2. Interestingly, it is evident that near the core the slowest Lévy flights
solution (γ −→ 2−, fractional Laplacian, highly non-local operator) would fall infinitesimally close to the regular
homoclinic (γ = 2, simple Laplacian, local operator). Only at the tail the expected improper limit can be seen:
the functions decay several orders of magnitude more slowly than the exponential. This is the feature that
necessitates the special treatment of boundary conditions for these ground state solutions. The effect is much
more pronounced for the higher values of p. Another point to observe is that as p increases, the intersection
point of a Lévy flights ground state and the regular homoclinic shifts closer to y = 0. For this reason the tail
condition implementation must begin earlier. The entire span of possible values is seen in figure 2.

Figure 9 shows the tail decay constant a(p, γ) for the range 1 ! γ < 2 and integer values of 2 ! p ! 5. The
developed method yields smooth curves throughout the relevant range of γ. The limit γ −→ 2− exists for each
value of p, but never equals the value at γ = 2, which can be regarded as zero due to the exponential tail decay.
As p increases for a fixed value of γ, the decay constant diminishes. Figure 10 gives a continuous variation
versus p (in the original chemical model the non-linearity exponent must be integer, however this constraint
can be relaxed in a purely mathematical setting) and representative values of γ. No local optima in p or γ were
observed.

The maximal point of u(y) is u(0). The dependence of the maximal value on p and γ was unknown hitherto bar
γ = 2 (equation (3a)) and the pair (p, γ) = (2, 1) (equation (3b)). Figures 11 and 12 reveal monotonic decrease
with γ or p for respectively fixed values of p or γ. It is interesting that both a(p, γ) and u(0; p, γ) exhibit
monotonicity in both arguments. This is a non-trivial finding, as often generalisation of partial differential
equations to fractional orders results in unexpected behaviour.

2.1. Validation of the tail constant

Continuity suggests that equation (4) can be re-written as

u(y) ∼ u(y∗)

(
y

y∗

)−(γ+1)

. (10)

Thus if u(y) was known, it would be possible to identify a point y∗ such that the asymptotic relation (4) held
to a prescribed error threshold in a(p, γ), since a(p, γ) = u(y∗)y

γ+1
∗ and for all y > y∗ this compound should

remain invariant. Given that the accuracy of a numerically obtained solution u(y) cannot be guaranteed to
equal the scheme accuracy due to the reasons discussed in §1.1, equation (10) can be used either to confirm
the correctness of the optimal value of a(p, γ), or establish an iterative scheme to obtain it. This should be
applicable to other problems, but might depend on the form of the asymptotic relation available. Figure 9
illustrates the concurrence of both methods for this example problem: the relative error is O

(
10−4

)
uniformly

throughout the parameter space (p, γ). The uniformity attests to the stability of the developed method in the
sense that no error accumulation occurs when the optimisation procedure is applied to parameters pairs (p, γ)
away from the control pair (2, 1).

2.2. Non-linearity

Obtaining a single solution u(y; p, γ) is quite expensive in both memory and computing time. This raises the
question of non-linearity. In this case both the tail decay constant a(p, γ) and the equation for u(y; p, γ) are
non-linear, however in a different problem the tail decay parameter(s) might be non-linear even if the equation
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Figure 7. Solution u(y; p, γ) for p = 2 and γ = 1, 1.5, 1.95 (Lévy flights, solid, respectively
from top curve to bottom) and γ = 2 (regular diffusion, dashed). Upper panel: core, lower
panel: tail. u(−y) = u(y).
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Figure 8. Solution u(y; p, γ) for p = 5 and γ = 1, 1.5, 1.95 (Lévy flights, solid, respectively
from top curve to bottom) and γ = 2 (regular diffusion, dashed). Upper panel: core, lower
panel: tail. u(−y) = u(y).
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Figure 9. Tail constant a(p, γ) for evenly spaced values 2 ! p ! 5 in ascending order 2 ↗ 5
from top curve to bottom obtained by a linear fit of ln u (dashed, equation (4)) and mean of
the invariant asymptotic (dotted, equation (10)).

itself is linear. Therefore in light of the error analysis in §1.1, care must be exercised. Could two sufficiently
close solutions ui(y; pi, γi), i = {1, 2}, be interpolated for any γ1 < γ < γ2 or p1 < p < p2 with a reasonable
accuracy? The anomaly index γ in experimental studies is commonly estimated to the precision of two decimal
places, cf. [2], whereas p is most often integer, although mathematically the problem is well posed for any p > 1.
Figures 13 and 14 illustrate the error incurred by interpolation in γ and p respectively versus a full numerical

solution. In the former case the maximal relative error is always obtained at the tail and uniform in its order of
magnitude throughout the parameter space, once more emphasising that obtaining an accurate solution in the
tail region is highly non-trivial. By contrast, in the latter case the maximal error is near the spike, varying up
to two orders of magnitude over the range 2 ! p ! 5 and evening out to a constant value at the tail. Illatively
increments of 0.1 for p are hardly acceptable for p near 2: the relative error in u(y) is only on the order of 10−2.
This estimate slowly improves for higher p. Increments of 0.01 in γ entail a relative error on the order of 10−3

through the range 1 ! γ < 2.

3. Conclusion

Replacement of a boundary condition with an asymptotics based tail condition is not unheard of (in [10] a
conceptually similar procedure is described), however this is the first study of its kind showing that implementing
the tail condition over a surprisingly large part of the computational domain markedly improves the solution
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Figure 10. Tail constant a(p, γ) for γ = 1, 1.5, 1.95 respectively from bottom curve to top.

accuracy; devising an optimisation procedure to determine the best implementation point; and establishing
that tracking a derived quantity of interest yields a smooth dependence of all concomitant properties on the
equation parameters. The approach is applicable to boundary value problems on infinite domains, where the
sought function is characterised by a slow decay. An example problem was chosen from a wide class of equations
with a two-dimensional parameter space, where one parameter controls non-linearity and the other governs the
tail shape, allowing for both algebraic (slow) and exponential (fast) decay. It was shown that when the former
problem is solved by the same means as the latter, the relative error incurred is dismayingly large – up to
the order of unity, furthermore by far not confined to the boundary region (figure 1). The devised method
allows to reduce the error magnitude by up to three orders and make it uniform throughout the domain (figure
6), a testament to the method’s merit, bearing in mind that the discrete problem solved numerically only
approximates the desired solution at the limit ϵ −→ 0 and D −→ ∞.

Since the fractional Laplacian operator −(−∆)γ/2 had been first used decades ago to describe a Lévy flights
dispersion with 1 ! γ < 2, several arguments were voiced for the unphysical behaviour thereof, the most
prominent being that in contrast to the case γ = 2 the concomitant random walk probability density lacked
a second spatial moment. This directly corresponds to the fact that at the limit γ −→ 2− the algebraic tail
would never approach the rate of exponential decay known for γ = 2. As a corollary this study obtained new
numerical results in support of the physicality of Lévy flights as a dispersion model: (a) proper limit of the
ground state peak at γ −→ 2 approaching the normal value of 3

2 ; (b) monotonic dependence of the tail decay
constant and ground state peak when 1 ! γ < 2 and 2 ! p ! 5. Albeit a “heavy” tail indicates that a particle
is allowed to move infinitely far from its initial point in finite time – an ungainsayable problem deemed more
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Figure 11. Spike peak u(0; p, γ) for evenly spaced values 2 ! p ! 5 in ascending order 2 ↗ 5
from top curve to bottom.

striking than the implied infinite velocity a particle acquires subject to Fickian diffusion, a proper limit in the
ground state peak means that the highest concentration and its location are continuous between Lévy flights
and Fickian diffusion. Non-monotonicity of derived or global properties for anomalous diffusion operators often
forms a powerful argument of their non-physicality. Here the opposite was shown for Lévy flights.

In summary, a simplistic implementation of boundary condition for functions with slowly decaying tails is
bound to affect the attained accuracy throughout the domain, begetting an error grossly exceeding the estimate
associated with the numerical scheme chosen for the solution. The proposed method is generic and versatile,
allowing to control the error whilst using well established solution schemes.
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Student Research Award 521927–2018 (KB).

Appendix A Numerical scheme parameters

All common parameters used to obtain the results reported herein are listed in table 1.
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Figure 12. Spike peak u(0; p, γ) for 2 ! p ! 5 and γ = 1, 1.5, 1.95 (solid, respectively from
top curve to bottom) and γ = 2 (dashed, regular diffusion, equation (3a)).

parameter symbol value

activator diffusion coefficient ϵ 0.01
inhibitor diffusion coefficient D 20000
reaction time constant τo 0.001
number of mesh points N 262144
Euler time step δt 0.01
solution domain (−2π/ϵ, 2π/ϵ)

Table 1. Numerical scheme parameters common to all computations

Appendix B Integrals of u(y)

The integral b(p, γ) =

∞∫

−∞

umdy, m > 0, is useful in problems involving the homoclinic or ground state, as

is the ratio f(p, γ) =

∞∫

−∞

up+1dy

/ ∞∫

−∞

u′2dy [11, 12, 18]. The dependence f(p, 2) =
2(p+ 1)

p− 1
was formerly



TITLE WILL BE SET BY THE PUBLISHER 17

0 300
0

2×10−3

y

0 300

0

10−3

y

Figure 13. Relative error of interpolated and numerically solved ground states∣∣∣
(
u(y; p, γ1)+u(y; p, γ2)

)/(
2u (y; p, (γ1 + γ2)/2)

)
−1
∣∣∣ for p = 2 (black) and p = 5 (grey/green).

Top panel: γ1 = 1.04, γ2 = 1.06. Bottom panel: γ1 = 1.94, γ2 = 1.96.
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Figure 14. Relative error of interpolated and numerically solved ground states∣∣∣
(
u(y; p1, γ) + u(y; p2, γ)

)/(
2u (y; (p1 + p2)/2, γ)

)
− 1

∣∣∣ for γ = 1 (black) and γ = 1.95

(grey/green).
Top panel: p1 = 2, p2 = 2.2. Bottom panel: p1 = 4.8, p2 = 5.
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calculated as a ratio [12]. Both b and f are computable through the beta functions for γ = 2 with arbitrary p
and p = 2, γ = 1. The beta function is defined as

B(µ, ν) =

∫ 1

0
tµ−1(1− t)ν−1dt. (11a)

The following identities hold by the indicated transformation of the integration variable:

t ,−→ 1− t : B(µ, ν) = B(ν, µ), (11b)

t ,−→ t2 ,−→ sin t : B(µ, ν) = 2

∫ π/2

0
sin2µ−1 t cos2ν−1 t dt, (11c)

t ,−→
1− t

t
,−→ t2 ,−→ sinh t : 2

∫ ∞

0
sinh2µ−1 t cosh1−2(µ+ν) t dt, (11d)

where in the latter (11b) was used between the first and second transformations. With (11d) and (3a)

b(p, 2) =
4

p− 1

(
p+ 1

2

)m/(p−1) ∫ ∞

0
cosh−2m/(p−1) y dy =

2

p− 1

(
p+ 1

2

)m/(p−1)

B

(
1

2
,

m

p− 1

)

. (12a)

With (11c) and (3b)

b(2, 1) = 2m
∫ ∞

−∞

dy

(1 + y2)m
= 2m+1

∫ π/2

0
cos2(m−1) y dy = 2mB

(
1

2
,m−

1

2

)

, (12b)

where the second integral is obtained by changing the integration variable y ,−→ tan y. The numerator in f(2, 1)

is then

∞∫

−∞

u3dy = 8B

(
1

2
,
5

2

)

. The denominator gives 16

∞∫

−∞

y2dy

(1 + y2)4
=

8

3

∞∫

−∞

dy

(1 + y2)3
=

8

3
B

(
1

2
,
5

2

)

, where

the first equality follows from integration by parts and the second by (12b) with m = 3. Thus

f(2, 1) = 3. (12c)
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Math., 129:272–299, 2012.
[19] K B Oldham and J Spanier. Fractional Calculus. Academic Press, New York, 1974.
[20] I Podlubny. Fractional differential equations. Academic Press, 1998.
[21] X Ros-Oton and J Serra. The Pohozaev identity for the fractional Laplacian. Arch. Rational Mech. Anal.,

213:587–628, 2014.
[22] T Sandev, A Iomin, H Kantz, R Metzler, and A Chechkin. Comb model with slow and ultraslow diffusion.

Math. Model. Nat. Phenom., 11:18–33, 2016.
[23] V A Volpert, Y Nec, and A A Nepomnyashchy. Fronts in anomalous diffusion – reaction systems. Phil.

Trans. R. Soc. A, 371:20120179, 2013.


