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A spike solution is constructed on the infinite line for a sub-diffusive version of the Gierer–

Meinhardt reaction – diffusion model. A non-local eigenvalue problem governs the spike’s

stability and is explicitly solvable for a certain choice of the kinetic parameters. Its solution

generalises former results for the Gierer–Meinhardt model with regular diffusion, and the

normal and anomalous systems’ properties are juxtaposed. It is shown that a Hopf bifurcation

occurs in the sub-diffusive system for larger values of the time parameter τo as compared to

the normal counterpart, rendering the anomalous system more stable. Asymptotic solutions

are obtained near important values of the diffusion anomaly index γ and collectively

shown to be valid over most of the applicable range 0 < γ < 1. A bifurcation delay scen-

ario is described for the sub-diffusive system, and the WKB exponent is computed analytically.

Key words: Sub-diffusion, reaction – diffusion, spike solution, non-local eigenvalue problem,

bifurcation delay

1 Introduction

The current contribution was inspired by two recent developments in the field of an-

omalous reaction – diffusion systems. One, an activator–inhibitor system, known as the

Gierer–Meinhardt model, had been endowed with a memory operator, resulting in an

anomalously slow diffusion and modified asymptotic relation between the diffusivities of

the two reagents [15]. In that study it was proved that the anomaly affects the drift and

stability properties of patterns of localised solutions (spikes) on a finite domain. The

salient conclusions of the analysis were three-fold: the anomalous pattern existed in a

more realistic parameter regime than its normal counterpart, the symmetry of the leftward

and rightward drift was broken due to the presence of memory, and the construction of a

stability theory for such a system required the generalisation of some classic notions. The

second breakthrough was achieved when an eigenvalue problem for the normal Gierer–

Meinhardt model on an infinite line was solved explicitly for a particular set of parameters

and the delayed onset of instability at a Hopf bifurcation point was analysed [18].

† Research for this contribution was conducted at Mount Allison University, New Brunswick,
Canada.
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Here it is the author’s purpose to build upon the aforementioned results to find

an explicit solution for the eigenvalue problem arising in the stability analysis of an

anomalous Gierer–Meinhardt model on an infinite line and facilitate the comparison of

bifurcation delay between the normal and anomalous systems. Because of the relative

complexity of the topics of anomalous diffusion and the asymptotic analysis entailing the

spike patterns, hereinafter each is reviewed separately.

The relevant type of anomalous diffusion and the corresponding mathematical operator

are presented in Section 2. The Gierer–Meinhardt model is described in detail and the

spike pattern is constructed in Section 3. The eigenvalue problem is derived and solved

in Section 4, and the bifurcation delay is treated in Section 5. The conclusions are

summarised in Section 6.

2 Anomalous diffusion and fractional derivatives

Diffusion anomalies have been discovered in sundry branches of the natural sciences

circa three decades ago, and the experimental evidence has been accruing ever since. The

solutions of some related mathematical equations had been first obtained even earlier [12],

however as the moment of these was realised more widely, a plethora of models was

constructed to describe the observed phenomena and motion properties particular to the

specific system at hand. It is understood today that regular diffusion, characterised by a

linear growth of the mean square displacement in time, i.e. ⟨r2(t)⟩ ∼ t, is but a special limit

of an infinity of processes that whilst having no universal description, can be classified

into families [4]. Within the various scientific disciplines some of the models falling into

any one of those generalised mathematical families can be obtained by narrowing the

consideration to given system dynamics [9] and motion intricacies beyond the property

of the mean square displacement [2].

One of the better studied anomalies ensues with the introduction of temporal memory

into the random walk, resulting in a process with ⟨r2(t)⟩ ∼ tγ , 0 ! γ < 1, named sub-

diffusion [11]. The dispersion of particles following such a process is signally limited in

comparison to the regular diffusion, and if the diffusing particles are to participate in a

concomitant process, for example, a chemical reaction, its rate is expected to diminish

accordingly. The mathematical operator associated with such a process is a time fractional

derivative of order γ.

The theory of fractional derivatives in general, alias fractional calculus, is related to

the classic calculus much in the same way as sub-diffusion relates to Brownian motion:

integer derivatives are but a special limit of a continuous family of operators, and as such

manifest distinctive, although often taken for granted properties [17]. When a diffusion

equation is endowed with a fractional derivative ∂γt instead of the first time derivative ∂t,

most basic mathematical tools of calculus and theory of differential equations must be

forfeited, a few immediate examples and their momentous consequences listed below.

• The kernel of the fractional derivative operator might be empty or spanned by other

than the constant functions, thereby dispossessing a dynamical system of an equilibrium

state: ∂γt 1 ! 0, where 1 and 0 refer to unity and zero functions.

• The fractional derivative of an exponential function might not be an exponential,
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wherefore the notion of operator spectrum and eigenmodes of a dynamical system is

rendered meaningless: ∂γt e
t " et.

• Successive application of several fractional derivatives is not equivalent to the applic-

ation of a derivative of the summed order. In combination with the kernel proper-

ties, this makes the manipulation of fractional differential equations rather involute:

∂γ1t ∂γ2t " ∂γ1+γ2t .

Since in various contexts some properties are of more importance than others, there exist

several types of fractional derivatives, chosen in accord with the demands of the required

application. Regular differential operators have been replaced by fractional derivatives in

many physical contexts, where it was desired to endow the system under discussion with

memory. Since there is no universal description of any type of diffusion anomaly, the

practice is to adopt a definition that upholds the most crucial properties of the system

and then analyse the influence on less essential ones [7,11]. Some models explore peculiar

generalisations and the ensuing mathematical properties [1, 13]. All temporal fractional

derivatives of order 0 < γ < 1, as well as some other operators, give the desired global

behaviour of the mean square displacement ⟨r2(t)⟩ ∼ tγ , and it is inevitable that other

characteristics of the diffusive process will differ, in a marked difference to the regular

diffusion. As long as the global behaviour constraint is satisfied, the choice of a suitable

type of derivative is dictated by the context. In the current contribution, it is imperative

that the fractional derivative of a constant function be the zero function. Therefore, the

following definition is adopted [5, 15].

Definition 2.1 Let f(t) be a continuous function on t > 0. When its time fractional derivative

of order γ exists, it is given by

dγ

dtγ
f(t) = − 1

Γ (−γ)

∫ t

0

f(t) − f(t − ζ)

ζγ+1
dζ, 0 < γ < 1, (2.1)

wherein Γ denotes the Gamma function.

Remark 2.1 The operator in (2.1) does not possess proper limits at γ −→ 1− and γ −→ 0+.

There exist definitions of fractional derivatives that do possess at least one of these lim-

its [17], i.e. lim
γ−→1−

dγf

dtγ
= f′(t) and lim

γ−→0+

dγf

dtγ
= f(t). However, when acting on a constant

function, those fractional derivatives do not give the zero function, thus rendering them unac-

ceptable for the purpose of analysis of a dynamical system near an equilibrium that is not the

quiescent solution. From the vantage point of physics, since the existence of stationary states

underpins the analysis of reaction – diffusion systems with regular diffusion, Definition 2.1

is particularly suitable for the sub-diffusive counterpart.

3 Spike solutions in Gierer–Meinhardt model with anomaly

In nature a mere dispersion of a set of particles is rare. Most often a diffusion process is

sustained by a source or reaction, mathematically modelled as a non-linear term. When

the diffusion is anomalous, care must be exercised when introducing reaction terms, so as

to keep the operator positive definite. The reaction–diffusion system to be analysed in the

current contribution is a paradigmatic model with spike-type solutions, where the ratio of
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diffusivities of the two species is asymptotically small. On an infinite line the sub-diffusive

Gierer–Meinhardt model reads

∂γt a = ϵ2γaxx − a +
ap

hq
− ∞ < x < ∞, t > 0, (3.1a)

τo ∂γt h = hxx − h + ϵ−γ a
m

hs
, −∞ < x < ∞, t > 0, (3.1b)

lim
|x|−→∞

a = lim
|x|−→∞

h = 0, a(x, 0) = a0(x), h(x, 0) = h0(x), (3.1c)

where a(x, t) and h(x, t) are the activator and inhibitor concentrations, respectively. Here

0 < ϵ ≪ 1, τo > 0, the quadruple of reaction exponents (p, q, m, s) satisfies

p > 1, q > 0, m > 0, s " 0,
p − 1

q
<

m

s + 1
, (3.2)

and the anomaly exponent γ ranges 0 < γ < 1. The set of kinetic exponents (p, q, m, s) is

fixed for a given system. Due to the chemical origin of the model, the exponents are most

often integers, however from a purely mathematical aspect an exponent might be any

positive number as long as the conditions in (3.2) hold. In the course of the derivation,

further conditions will be imposed to obtain explicit solutions [16].

The time constant τo is to be treated as a bifurcation parameter. Broadly speaking,

the system is stable whilst τo is sufficiently small. As τo increases, a Hopf bifurcation

is expected, and at sufficiently large values of τo the system possesses positive real

eigenvalues. With regular diffusion, this behaviour is well known [18, 19]. Following a

stability theory for a similar sub-diffusive system on a finite domain [15], analogous

behaviour is to be obtained here.

The activator diffusivity of O
(
ϵ2γ

)
is essential for the activator concentration a(x, t) to

be localised about a set of loci, thus creating a pattern of spikes. The inhibitor diffusivity

is on the order of unity, and being the faster diffusing species, its concentration h(x, t)

is not localised in the same fashion. It is worth noting that since both species diffuse

with the same anomaly index γ, their ratio of diffusivities (and hence of the mean square

displacement) remains constant. With the fractional derivative on the left-hand side, the

reaction is diffusion limited, i.e. the reaction process is slowed to the same extent as the

diffusion by the presence of memory, as the reaction encounters take place in accord

with the pace the reagents find each other in the medium. Mathematically, this equal

impediment of reaction and diffusion processes entails a positive definite operator, as

opposed to a sub-diffusive formulation of the type ∂tu = ∂1−γ
t uxx + f(u) for some species

u and source f(u), where the diffusion is hindered, but not the reaction [7]. Broadly

speaking, the reaction and diffusion terms cannot decouple, when the fractional derivative

operator is inverted to give a derivative of order 1 − γ on the right-hand side.

Substitution of γ = 1 in (3.1) recovers the Gierer–Meinhardt model with regular

diffusion [6]. A similar system on a finite domain manifested O(1) as well as O
(
ϵ2

)

eigenvalues, and the analysis allowed for the spike drift [8]. In a normal counterpart

of (3.1), regardless of the domain chosen, the spike pattern exists when the ratio of

diffusivities is O
(
ϵ2

)
, an unrealistic scenario for two substances diffusing in the same

medium. In asymptotic theory, it is typical to expect the small parameter ϵ not to
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exceed 0.1 for a reasonable approximation to ensue. With ϵ thus small the regular

Gierer–Meinhardt model requires a diffusivity ratio of at least 1:100, an extremely rare

occurrence in natural processes. In the anomalous model, the ratio required for pattern

existence is asymptotically better, and if γ is in the lower part of its allowed range

0 < γ < 1, the ratio is absolutely realistic. For instance, with γ = 0.2, the required

ratio ϵ2γ will equal approximately 1:2.5. Technically, the compound ϵγ appears in many

expressions and ostensibly is the small parameter involved in the asymptotic theory.

However, the construction of the spike solution immediately hereinafter reveals a slow

time scale that makes it convenient to retain the said compound in its current form.

It must be remembered that this is not a simple change of the asymptotic scale, but

an aftermath of the essentially slow diffusion, whose mean square displacement grows

sub-linearly according to ⟨r2(t)⟩ ∼ tγ , i.e. no constant diffusion coefficient, however small,

can entail this kind of impediment in the particle dispersion. If focussing on the mean

square displacement alone, it might be said that the diffusion coefficient is time dependent

and decays algebraically in time with the power 0 < 1 − γ < 1: ⟨r2(t)⟩ ∼ tγ−1t. This is

what gives the more realistic asymptotic scaling and renders the analysis of this system

of special interest.

3.1 Construction of a spike solution

Construction of a pattern of n spikes centred at a set of arbitrary loci xi, {i = 0, . . . , n−1},
is performed by the method of matched asymptotic expansions and follows closely the

derivation of a similar pattern on a finite domain [15]. The outer solution for the activator

away from the loci xi is a(x, t) ≡ 0. The spatial variable of the inner layer is yi
def
= (x−xi)/ϵγ

with the corresponding slow time scale σ = ϵαt. The generalisation of the spatial scale is

immediate when the differential term on the right-hand side in (3.1a) is sought to be O(1)

within the inner layer. In contrast, the deduction of the corresponding temporal scale is

not as simple.

In order to determine the temporal scale one must treat the problem of a spike’s drift

occurring on the slow time scale. The inner asymptotic solutions are set as

Ai(yi, σ) = a
(
xi + ϵγyi, ϵ

−ασ
)

∼ A(0)
i (yi, σ) + ϵγA(1)

i (yi, σ) + · · · (3.3a)

Hi(yi, σ) = h
(
xi + ϵγyi, ϵ

−ασ
)

∼ H (0)
i (yi, σ) + ϵγH (1)

i (yi, σ) + · · · . (3.3b)

From Definition 2.1, the fractional derivative of a function of a scaled variable f(t) ≡ F(σ)

gives

∂γt f(t) = ϵαγ∂γσF(σ), F(σ) ≡ f(ϵ−ασ). (3.4)

Then substitution of (3.3) into (3.1) yields to leading order

∂2
yi
A(0)
i − A(0)

i +
A(0)
i

p

H (0)
i

q = 0, lim
|yi|−→∞

A(0)
i = 0 (3.5a)

∂2
yi
H (0)

i = 0, lim
yi−→±∞

H (0)
i = lim

x−→x±
i

h(0). (3.5b)

The boundary conditions in (3.5) were set by matching to the outer solution. Solving
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(3.5b), it is found that H (0)
i must be independent of yi. The reason is two-fold: due to the

spike’s symmetry Hi is expected to be an even function, and a linear function in yi would

not match with the outer solution. Then, (3.5a) is equivalent to

A(0)
i = H (0)

i

β
u(yi), β =

q

p − 1
, (3.6)

where u(y) is the homoclinic solution of the non-linear ordinary differential equation

u′′ − u + up = 0, u′(0) = 0, u(0) > 0, lim
|y|−→∞

u(y) = 0, (3.7)

explicitly solvable as

u(y) =

{(
p + 1

2

)
sech2

(
(p − 1)

2
y

) }1/(p−1)

. (3.8)

Hence, Ai(yi, σ) decays exponentially as |yi| −→ ∞ and is localised in the vicinity of the

spike locus xi.

The error in the leading order approximation is O (ϵγ) in magnitude. At the next order,

the problem for A(1)
i must involve the drift of the spike centre xi [8]. With regular diffusion,

A(0)
i (yi(σ), σ) is differentiated with respect to the first argument, followed by the application

of the chain rule introducing
dxi
dσ

. The derivative with respect to the second argument is of

a smaller order of magnitude. However, the chain rule does not hold when the derivative

is fractional and one must proceed with caution.

Take yi(t) ≡
(
x − xi(σ)

)
/ϵγ and assume xi ∈ C∞. Further assume Ai(yi(σ)) ∈ C∞. As

long as a spike’s shape remains intact, i.e. the neighbouring spikes’ centres are sufficiently

far away with only the exponentially small tails overlapping, these assumptions on the

smoothness of solutions hold. By Definition 2.1,

∂γσAi(yi(σ)) = − 1

Γ (−γ)

∫ σ

0

{
Ai

(
x − xi(σ)

ϵγ

)
− Ai

(
x − xi(σ − ζ)

ϵγ

)}
dζ

ζγ+1
. (3.9)

A new variable ξ in terms of ζ is then defined by

ξ ≡
(
xi(σ − ζ) − xi(σ)

)
/ϵγ . (3.10)

To solve for ζ in terms of ξ when ϵ ≪ 1, xi is expanded ( xi ∈ C∞ ) as

xi(σ − ζ) = xi(σ) − dxi
dσ

ζ +
1

2

d2xi
dσ2

ζ2 − + . . . . (3.11)

Hence, (3.10) becomes

ξ = ϵ−γ
(

−dxi
dσ

ζ +
1

2

d2xi
dσ2

ζ2 − + . . .

)
. (3.12)
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Away from fixed points, where
dxi
dσ

= 0, the series is reverted to give

ζ = −
(
dxi
dσ

)−1 (
ϵγξ − 1

2

d2xi
dσ2

ζ2 + − . . .

)
,

dxi
dσ

" 0. (3.13)

Note that this expression is exact – the series was not truncated, and the inversion holds

everywhere except at the fixed points. A recursive substitution into higher powers of ζ

yields

ζ ∼ ϵγ
(

−dxi
dσ

)−1

ξ + O
(
ϵ2γ

)
. (3.14)

Therefore, for ϵ ≪ 1 (3.9) becomes

∂γσAi (yi(σ)) ∼ − ϵ−γ2

Γ (−γ)

(
−dxi
dσ

)−1
−∞·sgn

(
dxi
dσ

)

∫

0

(
Ai (yi) − Ai (yi − ξ)

) (
−dxi
dσ

1

ξ

)γ+1

dξ.

(3.15)

Changing variables to have the upper integration bound positive,

∂γσAi (yi(σ)) ∼ −ϵ−γ2

sgn

(
dxi
dσ

) ∣∣∣∣
dxi
dσ

∣∣∣∣
γ

Dγ
yi
Ai(yi), (3.16a)

Dγ
yi
Ai(yi) ≡ sgn

(
dxi
dσ

)
1

Γ (−γ)

∫ ∞

0

{
A(yi) − Ai

(
yi + sgn

(
dxi
dσ

)
ξ

)}
dξ

ξγ+1
. (3.16b)

Result (3.16) is the fractional equivalent of a chain rule in the case of an infinitely

differentiable function Ai and in the limit ϵ −→ 0.

Combining (3.16) and (3.6) to extract the equations for A(1)
i and H (1)

i from (3.1), it is

found that the time scale must be set as α = γ + 1 to have a proper order balance in

the asymptotic solution. The corresponding time scale σ = ϵγ+1t evinces the impossibility

of a simple replacement of the compound ϵγ used in many expressions by an equivalent

small parameter. Whilst at first glance this underlying time scale is not obvious in the

formulation (3.1), it is nonetheless significant both for the correctness of the current

derivation and for congruence with the theory on drifting spikes in finite domains. Quite

peculiarly, at the limit of regular diffusion (γ = 1), the diffusivity ratio ϵ2γ and the time

scale ratio ϵγ+1 coincidentally equal, thereby creating an incorrect impression that with

anomaly all asymptotic compounds will remain powers of one basic parameter ϵγ . To

resume, the correction equations then are

H (0)
i

−βLA(1)
i =

q

H (0)
i

up H (1)
i − sgn

(
dxi
dσ

) ∣∣∣∣
dxi
dσ

∣∣∣∣
γ

Dγ
yi
u, (3.17a)

∂2

∂y2
i

H (1)
i = −H (0)

i

βm−s
um, (3.17b)

where L is the linearised homoclinic operator
d2

dy2
− 1 + pup−1. The time derivative term
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τo∂γtH
(0)
i in (3.1b) was neglected to obtain (3.17b). This is consistent when τo∂γtH

(0)
i ∼

o(ϵ−γ). Since ∂γtH
(0)
i = ϵαγ∂γσH

(0)
i and α = γ + 1, this condition holds when τo satisfies

τo ∼ o(ϵ−γ(2+γ)).

By the Fredholm alternative, where L is self-adjoint, the solvability condition is

∫ ∞

−∞

du

dyi

{
q

H (0)
i

upH (1)
i − sgn

dxi
dσ

∣∣∣∣
dxi
dσ

∣∣∣∣
γ

Dγ
yi
u

}
dyi = 0. (3.18)

The first term in (3.18) is integrated by parts twice and simplified with the aid of (3.7)

along with the facts that u and ∂2
yi
H (1)

i are even functions. Then, the solvability condition

becomes

q

2(p + 1)H (0)
i

∫ ∞

−∞
up+1dyi

(
lim

yi−→∞

dHi

dyi

(1)

+ lim
yi−→−∞

dHi

dyi

(1))

= −
∣∣∣∣
dxi
dσ

∣∣∣∣
γ

sgn

(
dxi
dσ

) ∫ ∞

−∞

du

dyi
Dγ

yi
u dyi. (3.19)

In the outer region away from the spike a(x, t) is exponentially small and h(x, t) is

expanded as

h ∼ h(0)(x, t) + O
(
ϵγ

)
.

To derive a differential equation for the outer problem for h(0), it is necessary to express

the non-linear term in (3.1b) as a weighted δ-function due to the localised behaviour of a

as

ϵ−γ a
m

hs
∼

n−1∑

i=0

bi δ(x − xi), (3.20)

where the weight bi is

bi = ϵ−γ
∫ x+

i

x−
i

am

hs
dx =

∫ ∞

−∞

am

hs
dyi ∼ H (0)

i

βm−s
∫ ∞

−∞
um dy.

Then from (3.1b), the outer equation for h(0) is

h(0)
xx − h(0) = bm

n−1∑

i=0

H (0)
i

βm−s
δ(x − xi), bm =

∫ ∞

−∞
um dy. (3.21)

Equation (3.21) is solved as

h(0)(x, t) = −bm

n−1∑

i=0

H (0)
i

βm−s
G(x; xi), (3.22)

where the Green’s function

G(x; xi) = −1

2
e−|x−xi| (3.23)

is the solution of

Gxx − G = δ(x − xi), lim
|x|−→∞

G(x; xi) = 0. (3.24)

missing minus before b_m
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Then with

lim
yi−→∞

∂yiH
(1)
i + lim

yi−→−∞
∂yiH

(1)
i = lim

x−→x+
i

h(0)
x + lim

x−→x−
i

h(0)
x

= bm

⎧
⎪⎪⎨

⎪⎪⎩
2

n−1∑

j=0
j"i

H (0)
j

βm−s
Gx(xi; xj) + H (0)

i

βm−s
(
Gx(x

−
i ; xi) + Gx(x

+
i ; xi)

)
⎫
⎪⎪⎬

⎪⎪⎭
, (3.25)

(3.19) becomes

sgn

(
dxi

dσ

) ∣∣∣∣
dxi

dσ

∣∣∣∣
γ

= − qbmf(p; γ)

(p + 1)H (0)
i

⎧
⎪⎨

⎪⎩
1

2
H (0)

i

βm−s
(
Gx(x

−
i ; xi) + Gx(x

+
i ; xi)

)
+

n−1∑

j=0
j"i

H (0)
j

βm−s
Gx(xi; xj)

⎫
⎪⎬

⎪⎭
,

(3.26a)

H (0)
i (σ) = bm

n−1∑

j=0

H (0)
j

βm−s
G(xi; xj), (3.26b)

f(p; γ) ≡
(∫ ∞

−∞
up+1 dy

) /(∫ ∞

−∞
u′(y)Dγ

yu dy

)
. (3.26c)

Hereinafter, the analysis will focus on a single spike centred at an arbitrary point xo. In

this particular case, it is readily inferred upon matching the inner and outer solutions that

h(0)(xo, t) = H (0) =

(
2

bm

)1/(βm−s−1)

. (3.27)

Hence, the globally valid asymptotic solutions for the activator and inhibitor concentra-

tions are

aeq ∼ H (0)β u
(x − xo

ϵγ

)
(3.28a)

heq ∼ −bmH
(0)βm−s

G(x; xo). (3.28b)

The spike is at equilibrium due to symmetry: if the obtained Green’s function (3.23) is

substituted into the drift equation of a generic pattern (3.26), it is found explicitly that

the spike locus is stationary, i.e.
dxo
dσ

= 0, (3.29)

and for this degenerate case the only effect of anomaly is the altered width of the spike.

However, for patterns of more spikes the new time scale comes into play along with the

broken symmetry of a leftward/rightward drift, as is seen from the fractional operator

(3.16b).

The immediate question regarding the stability of this spike is treated in Section 4.

4 Eigenvalue problem

A stability theory for the anomalous spike constructed in Section 3 requires certain

painstakingness. Since the fractional derivative 2.1 of an exponential function is not
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an exponential, no exponentially evolving disturbances can be expected when (3.1) is

linearised. Therefore, if a comparison between (3.1) and its normal limit with γ = 1 is to

be effected, the focus must be narrowed to a class of disturbances that are exponential to

leading order:

a ∼ aeq + eλt ã(x), ã(x) ∼ ã(0) + ϵγ ã(1) + · · · , |ã| ≪ 1, (4.1a)

h ∼ heq + eλt h̃(x), h̃(x) ∼ h̃(0) + ϵγ h̃(1) + · · · ,
∣∣h̃

∣∣ ≪ 1, (4.1b)

λ(t) ∼ λ(0) + ϵγλ(1)(t) + · · · , λ(0) = const.

Here, aeq, heq are the solutions in (3.28). The exponent λ(0) constitutes an anomalous

eigenvalue for the purpose of comparison to the classic eigenvalue of the normal system.

In the special limit of regular diffusion, the disturbance is purely exponential, whence

λ(1) and all subsequent corrections must vanish. Unfortunately, the analytical difficulty

of fractional calculus prevents the determination of λ(1) explicitly, and the analysis is

confined to the determination of λ(0). Moreover, at this stage it is not obvious that the

class of perturbations considered is the most unstable, however the quest for disturbances

of disparate behaviour is beyond the scope of the current contribution. The purpose of

this section is to facilitate a comparison between the stability of (3.1) and its normal

counterpart giving rise solely to exponential perturbations. Hereinafter, an eigenvalue

problem for ã(0) is to be derived, where ã(0) is regarded as an anomalous eigenfunction.

Henceforth {λ(0), ã(0)} is referred to as an eigenvalue–eigenfunction pair for convenience,

yet one must bear in mind that only in the limit γ = 1 do they in fact correspond to these

classic notions.

Upon substitution of the disturbance form (4.1) into (3.1), linearisation and subsequent

cancellation of the exponential terms, the following expression ensues:

e−λ(0)t d
γ

dtγ
eλ

(0)t = − 1

Γ (−γ)

∫ t

0

1 − e−λ(0)ζ

ζγ+1
dζ. (4.2)

The integral on the right hand side is convergent as t −→ ∞ if and only if ℜλ(0) " 0, and

furthermore in the limit ϵ −→ 0 the following asymptotics is obtained [15]:

e−λ(0)t d
γ

dtγ
eλ

(0)t ∼ λ(0)γ + O
(
ϵγ(γ+1)

)
. (4.3)

Estimate (4.3) possesses a proper limit at γ −→ 1− and recovers the normal relation upon

the substitution γ = 1, whereat it is exact and the error term ought to be omitted. The

restriction ℜλ(0) " 0 prevents the tracing of eigenvalues in the left half plane, however

since for the regular diffusion system, studied in depth in the last thirty years [8, 19, 20],

trajectories have rarely been constructed for the motion of eigenvalues prior to the onset

of instability by a Hopf bifurcation [3], the impossibility to follow the eigenvalues in the

left half plane is not detrimental for the purport of comparison at hand. Moreover, as will

become evident hereunder, the part of the complex plane, where an anomalous eigenvalue

may exist is the sector | arg z| < γπ, whilst the instability zone is | arg z| < 1
2γπ. These

two sectors are the generalised notions of the complex plane and the right half plane
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respectively. The Hopf bifurcation will occur on the border | arg z| = 1
2γπ, replacing the

imaginary axis. The reason behind these changes will become apparent once it is shown

that the anomalous eigenvalue problem can be mapped onto the normal one by λ(0)γ -−→ λ

(equation (4.3) being a harbinger of such an inference), and hence if a normal eigenvalue

lies on the principal branch, i.e. −π < arg λ ! π, perforce the anomalous concominant

λ(0)γ must satisfy −γπ < arg λ(0) ! γπ. The instability zone and the Hopf bifurcation locus

are mapped identically.

Linearising (3.1) about the equilibrium solution (3.28) and using (4.3) yields

λ(0)γ ã(0) =

(
ϵ2γ

d2

dx2
− 1 + p

ap−1
eq

hqeq

)
ã(0) − q

apeq

hq+1
eq

h̃(0), (4.4a)

τoλ
(0)γh̃(0) =

(
d2

dx2
− 1 − ϵ−γs

ameq

hs+1
eq

)
h̃(0) + ϵ−γm

am−1
eq

hseq
ã(0), (4.4b)

lim
|x|−→∞

ã(0) = lim
|x|−→∞

h̃(0) = 0. (4.4c)

From the activator equation (4.4a) an eigenfunction is expected with a localisation similar

to that of the equilibrium solution (3.28a)

ã ∼ ã(0)
(x − xo

ϵγ

)
+ O

(
ϵγ

)
. (4.5)

In the inhibitor equation (4.4b) the non-linear terms can be represented as weighted

δ-functions similarly to (3.20), resulting in the following problem:

d2

dx2
h̃(0) −

(
1 + τoλ

(0)γ + sbmH
(0)βm−s−1

δ(x − xo)

)
h̃(0) = −woδ(x − xo), (4.6)

wo = mH (0)β(m−1)−s
∫ ∞

−∞
um−1ã(0) dy.

Problem (4.6) with boundary conditions (4.4c) is equivalent to the following problem

defined on the real line with continuity and jump conditions at the spike centre

d2

dx2
h̃(0) −

(
1 + τoλ

(0)γ
)
h̃(0) = 0, lim

|x|−→∞
h̃(0) = 0, (4.7a)

h̃(0)
(
x+
o

)
= h̃(0)

(
x−
o

)
,

(
d

dx
h̃(0)

∣∣∣∣
x+
o

− d

dx
h̃(0)

∣∣∣∣
x−
o

)
= sbmH

(0)βm−s−1
h̃(0) (xo) − wo, (4.7b)

readily solved as

h̃(0) =
wo e

−µ|x−xo|

2(µ + s)
, µ =

√
1 + τoλ(0)γ . (4.8)

Substituting (4.5) into (4.4a) gives

d2

dy2
ã(0) −

(
1 + λ(0)γ − pup−1

)
ã(0) = qH (0)β−1

uph̃(0) (xo) , lim
|y|−→∞

ã(0) = 0, (4.9)
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thereby with the use of (4.8) cast into

L ã(0) − up
χ

bm

∫ ∞

−∞
um−1 ã(0)dy = λ(0)γ ã(0), lim

|y|−→∞
ã(0) = 0, (4.10)

L =
d2

dy2
− 1 + pup−1, χ =

mq√
1 + τoλ(0)γ + s

.

In this form the non-local eigenvalue problem (4.10) is identical to the one derived for

a single spike on a finite domain [15], only the multiplier χ reflects the difference in

geometry. Problem (4.10) also conforms to the counterpart with regular diffusion [18]

upon the mapping λ(0)γ -−→ λ, thereat explicitly solvable if p = 2m − 3, the solution being

given by
λ(0)γ = m

(
m − 2 − χ

2

)
, (4.11)

or equivalently

√
1 + τoλ(0)γ = G

(
λ(0)

)
, G

(
λ(0)

) def
=

m2q

2
(
m − λ(0)γ

) − s, m = m(m − 2), (4.12)

so that the root λ(0) can be obtained by seeking the intersection point of G and the

square root function on the left-hand side. With regular diffusion, the properties of these

two functions allowed for certain conclusions regarding the existence and uniqueness

of this intersection [18]. Furthermore, by imposing a particular form on λ(0) the Hopf

bifurcation was found. Hereinafter performing an analysis similar in concept, yet more

complicated due to the more generic nature of the anomalous diffusion, the anomalous

Hopf bifurcation point is sought.

With the presence of anomaly, the salient feature of the two functions in (4.12) deviating

significantly from the normal behaviour is the infinite derivative at λ(0) −→ 0+. This is

a manifestation of the improper limit at γ −→ 1−, as with the substitution of γ = 1

the slopes of both functions are finite at λ(0) −→ 0+. G still has an asymptote, though

with anomaly it is situated at λ(0)
a = m1/γ . Since G′ > 0 ∀ 0 < λ(0) < λ(0)

a , there must be

an inflexion point within this interval, which is absent in the regular counterpart. The

function
√

1 + τoλ(0)γ is concave just like with regular diffusion.

With regular diffusion when the time parameter τo is tuned, a pair of complex conjugate

eigenvalues moves on the complex plane as follows [18]: for 0 < τo ≪ 1 there are no

eigenvalues in the right half plane, at τo = τH a pair crosses the imaginary axis, for

τH < τo < τm there is a complex conjugate pair, merging onto the real axis at τo = τm, and

two real positive eigenvalues for τo > τm. Since the anomalous problem (4.10) might be

obtained from the normal counterpart by the mapping λ -−→ λ(0)γ , seeking an anomalous

eigenvalue with arg λ(0) = ϕ is equivalent to solving the normal problem for an eigenvalue

with arg λ = γϕ. Hence, a trajectory of the motion across the imaginary axis and towards

the real axis must still ineluctably be traced, only the thresholds and the progress velocity

will differ. To find the new Hopf bifurcation threshold set λ(0) = ıλH in (4.12) to obtain

G
(
ıλH

)
=

√
1 + τH

(
ıλH

)γ
, λH ∈ !, (4.13)

which is equivalent to having λ = exp( 1
2 ıγπ).
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It must be noted that the mapping λ -−→ λ(0)γ suffices to infer that the anomalous

system is more stable than the concomitant with simple diffusion: when the anomalous

eigenvalue first crosses the imaginary axis, its normal counterpart has already traversed a

part of the right-half plane and is located at arg λ = 1
2γπ. Hence, the system with regular

diffusion is in an unstable regime for all τo exceeding the normal bifurcation threshold,

whereas with anomaly the instability only just sets in.

The remnant of this section is dedicated to finding the anomalous Hopf bifurcation

point by exact as well as asymptotic solutions of (4.13). The solutions extend the cases

covered hitherto for regular diffusion [18] to a wider range of kinetic exponents as well

as to the full range of the anomaly exponent γ.

4.1 Hopf point for s=0

Solving (4.13) analytically is somewhat tedious, so the simpler case of s = 0 is treated

first. Using the identity |zα| = |z|α, equate the moduli on the two sides of (4.13) to yield

(
1 + 2τHλ

γ
H cos γ̃ + τ2Hλ

2γ
H

)1/4

=
m2q

2

(
m2 − 2mλγH cos γ̃ + λ2γ

H

)1/2
, γ̃ =

πγ

2
. (4.14)

Using the identity arg zα = α arg z equate the arguments on the two sides of (4.13) to yield

1

2
arctg

τHλ
γ
H sin γ̃

1 + τHλ
γ
H cos γ̃

= arctg
λγH sin γ̃

m − λγH cos γ̃
. (4.15)

With

tg(2α) =
2 tg α

1 − tg2 α

and elementary algebra (4.15) gives the explicit expression for τH
(
λH

)

1

τH
=

(
m − 2λγH cos γ̃

)2
− λ2γ

H

2
(
m − λγH cos γ̃

) . (4.16)

Squaring (4.14) and utilising (4.16) to simplify yields

(
m2 − 2mλγH cos γ̃ + λ2γ

H

)2

=
m4q2

2τH

(
m − λγH cos γ̃

)
, (4.17)

and upon elimination of τH results in a quartic for λγH

λ4γ
H − 4m cos γ̃ λ3γ

H +
(

2M 1
4

+ 4M−1 cos2 γ̃
)
λ2γ
H − m 4M−1 cos γ̃ λγH + m2

1M− 1
4

= 0,

aMb(m, q)
def
= a m2 + b m4q2. (4.18)

With γ = 1 equation (4.18) reduces to a quadratic in λ2
H since then cos γ̃ = 0. The system

with exponents (p, q, m, s) = (3, 2, 3, 0) has been analysed in depth [18] and is a particular
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case of (4.18). The full quartic is, of course, solvable analytically, however it will be

virtually impossible to adjudge which root out of the four is to be chosen. Therefore, it is

advisable to obtain asymptotic solutions near important values of γ such as γ = 1 (regular

diffusion), γ = 0 (the most extreme anomalous case) and γ = 1
2 ( representative fractional

value ). From (4.18) it is evident that an asymptotic solution for λγH in the vicinity of any

value of γ must be a power series of the form

λγH = λo

(
1 + ε

λ1

λo
+ ε2

λ2

λo
+ · · ·

)
, |ε| ≪ 1 (4.19)

with ε unrelated to the small diffusivity parameter ϵ. However, it so happens that λ1 < 0

for a substantial set of γ within 0 < γ < 1, and thus according to (4.19) to first order λH
has a root at ε ≈ −λo/λ1. In reality λH has no such root, but for (4.19) to be accurate ε

must be very small or else many terms in the series must be computed. It was found that

a power series form

λH = λo

(
1 + ε

λ1

λo
+ ε2

λ2

λo
+ · · ·

)
, |ε| ≪ 1 (4.20)

approximates the true solution more accurately for a wider range of ε. In the following

sections for each of γ = 0, 1
2 , 1, an asymptotic solution is accordingly obtained to leading

order followed by two corrections. For particular choices of the exponents (p, q, m, s), the

asymptotic solutions are compared to the full numerical solution of (4.18).

4.1.1 Asymptotic solution near γ = 1

Taking γ = 1 − ε, 0 < ε ≪ 1, expanding

cos γ̃ ∼ π

2
ε− π3

48
ε3 + O

(
ε5

)
(4.21a)

λγH ∼ λo +
(
λ1 − λo ln λo

)
ε+

(
λ2 − λ1(1 + ln λo) +

1

2
λo ln2 λo

)
ε2 + O

(
ε3

)
, (4.21b)

substituting into (4.18) and collecting similar powers of ε gives

λo =

√
− 1M 1

8
+

m2q

2

√
2 1M 1

32
, (4.22a)

λ1 = λo ln λo + πm
2λ2

o + 2M− 1
2

4λ2
o + 4M 1

2

, (4.22b)

λ2 = λ1

(
1 + ln λo

)
− λo

2
ln2 λo +

πmg

(
6λo +

2M− 1
2

λo

)
− g2

(
6λo +

2M 1
4

λo

)
− π2

1M− 1
4
λo

4λ2
o + 4M 1

2

,

(4.22c)

g = λ1 − λo ln λo.
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The leading order solution (4.22a) corresponds to regular diffusion, and for the particular

case (p, q, m, s) = (3, 2, 3, 0) has been formerly obtained [18].

4.1.2 Solution for γ = 1
2

Taking γ = 1
2 in (4.18) and rearranging into a more compact form gives

(
λH −

√
2 m

√
λH + m2

)2
=

m4q2

4

(
λH − 2

√
2 m

√
λH + m2

)
. (4.23)

Equation (4.23) is a quartic in
√
λH . It is possible to solve (4.23) by following some of the

steps known for such equations. First add into the parentheses on the left hand side an

arbitrary y, balance the right hand side accordingly and choose y so that the right hand

side becomes a complete square. This yields a cubic for y

y3 + 1M 1
8

y2 − 1

32
m8q4m2 = 0. (4.24)

The sequence of transformations y = ỹ − 1
3

(
1M 1

8

)
and ỹ = w +

(
1M 1

8

)2/
(9w) yields an

immediately solvable quadratic for w3

w6 +

(
2

27

(
1M 1

8

)3
− 1

32
m8q4m2

)
w3 +

1

36

(
1M 1

8

)6
= 0. (4.25)

Hence upon solving (4.25) for w and reversing the sequence of transformations to obtain

y, a quadratic for
√
λH ensues by taking the root of (4.23), where the right hand side has

been cast in a complete square form by the addition of y

λH −
√

2 m
√
λH +m2 +y = ±

√
1

4
m4q2 + 2y

(√
λH −α

)
, α =

√
2 m

2

1
2m

4q2 + 2y
1
4m

4q2 + 2y
. (4.26)

The solution λH is immediate and is omitted here due to its cumbersome form. It ought

to be noted that equation (4.25) yields six roots, which in pairs give three roots for y. It

is proved below that there exists exactly one solution y > 0. The discriminant of (4.25)

is negative regardless of m and q, thus perforce w is complex. Nonetheless, there exists a

single real positive y. With this value y > 0 one of the roots of (4.26) conforms to the

desired Hopf bifurcation eigenvalue.

To prove the existence of a unique y > 0 define

g1(y) = y2
(
y + 1M 1

8

)
(4.27)

and rearrange (4.24) to read

g1(y) =
1

32
m8q4m2. (4.28)

The function g1 has a double root and a minimum at y = 0. Its remaining root is at

y = − 1M 1
8
< 0. Hence, g1 is ascending for all y > 0 and will have a unique intersection

prescribed by (4.28). This suffices for the purport of procuring one positive value y, thence

entailing real coefficients in the quadratic (4.26).



16 Y. Nec

It is further possible to determine when additional real values of y exist. This is useful

in numerical implementation by way of caution. The function g1 has a maximum at

y = − 2
3 (1M 1

8
) and the maximal value is max g1 = 4

27 (1M 1
8
)3. Hence if max g1 <

1
32m

8q4m2,

the real root to (4.28) is unique. If however

max g1 "
1

32
m8q4m2, (4.29)

there will be two negative (equal when the equality is taken) roots. Equation (4.29) can

be rearranged into

(
y1 +

1

8

)3

"
27

128
y1, y1 =

(
m − 2

mq

)2

. (4.30)

Define

g2(y1) =

(
y1 +

1

8

)3

− 27

128
y1 =

(
y1 − 1

4

)(
y2

1 +
5

8
y1 − 1

128

)
. (4.31)

By the initial constraint on the reaction exponents (3.2) with s = 0 and p = 2m − 3, it

follows that y1 <
1
2 . Thus by g2 ! 0 all roots of (4.28) will be real (with only one positive)

if

1

4
!

m − 2

mq
<

1

2
or 0 <

m − 2

mq
!

√
−5 +

√
27

4
, (4.32)

and there will be exactly one real root (positive) if

√
−5 +

√
27

4
<

m − 2

mq
<

1

4
. (4.33)

4.1.3 Asymptotic solution near γ = 1
2

With the Hopf bifurcation eigenvalue given by (4.26) it is possible to obtain an asymptotic

solution near γ = 1
2 . Here too the power series form (4.20) is preferable. Taking γ = 1

2 + ε,

|ε| ≪ 1, expanding

cos γ̃ ∼
√

2

2

(
1 − π

2
ε− π2

8
ε2 + O

(
ε3

))
(4.34a)

λγH ∼
√
λo

{
1+

(
ln λo +

λ1

λo

)
ε+

1

2

((
ln λo +

λ1

λo

)2
+

2λ1

λo
+
λ2

λo
− λ2

1

2λ2
o

)
ε2 +O

(
ε3

)}
, (4.34b)

substituting into (4.18) and collecting similar powers of ε gives

λ1 = −2λo

(
ln λo + π

√
2 mλo −

√
λo 2M− 1

2
+

√
2 m 1M− 1

4

4λ
3/2
o − 6

√
2 mλo +

√
λo 8M− 1

2
−

√
2 m 2M− 1

2

)
, (4.35a)

λ2 =
λ2

1

2λo
− 2λ1 − λog

2 − λo ×
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6λ3/2
o g2 − 2

√
2mλo

(
3g2 − 3π

2
g − π2

8

)
+

√
λo g( 4M− 1

4
g − π 4M−1) + π

√
2m 1M− 1

4

(
g + 1

4

)

2λ3/2
o − 3

√
2 mλo +

√
λo 4M− 1

4
−

√
2 m 1M− 1

4

,

(4.35b)

g = ln λo +
λ1

2λo
,

where in all of the above λo is the solution from (4.26).

4.1.4 Asymptotic solution near γ = 0

Sufficiently far from γ = 1 the inaccuracy problem due to a retained power form (4.19)

becomes irrelevant. In particular near γ = 0 the power series form (4.20) is inapplicable.

Taking 0 < ε = γ ≪ 1, from the expansion

cos γ̃ ∼ 1 − π2

8
γ2 +

π4

384
γ4 + O

(
γ6

)
(4.36a)

it becomes obvious that the appropriate asymptotic form must be

λγH ∼ λo + γ2λ2 + γ4λ4 + O
(
γ6

)
. (4.36b)

As before, substituting into (4.18) and collecting similar powers of γ gives at order O
(
γ0

)

a quartic for λo
(
λo − m

)4
=

m4q2

4

(
3λo − m

)(
λo − m

)
. (4.37)

The point (m, 0) in the complex plane conforms to the eigenvalue of the local operator

L in (4.10) with an eigenfunction of a constant sign [20]. In the non-local problem all

eigenvalues are located to the left of that point. Hence, λo "m and (4.37) becomes

(
λo − m

)3
=

m4q2

4

(
3λo − m

)
. (4.38a)

At higher orders

λ2 = −π2

8
λo

m
(
λo − m

)2
+ 1

2 m
4q2

(
λo − 1

2m
)

(
λo − m

)3
− 3

8 m
4q2

(
λo − 2

3m
) , (4.38b)

λ4 =
1

4

{
− 6λ2

2

((
λo − m

)2
− 1

8
m4q2

)
+ π2λ2

(
− 3

2
mλ2

o + λo 2M− 1
2

− m 1
2
M− 1

8

)

+
π4

96
λo

(
mλ2

o−2λo 4M−1+m 1M− 1
4

)}/{
(λo−m)3−3

8
m4q2

(
λo−2

3
m

)}
, (4.38c)

where in all of the above λo is the solution of (4.38a) given by

λo = m + w +
m4q2

4w
, w3 =

m4q2

4

(
m ±

√
1M− 1

4

)
. (4.39)
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Similarly to the situation with γ = 1
2 the variable w is complex, nonetheless λo is real. In

particular if 0 < λo < 1, the solution at γ = 0 is the infimum

lim
γ−→0+

λH = lim
γ−→0+

(
λo + γ2λ2 + γ4λ4 + O

(
γ6

))1/γ

= 0. (4.40)

On the other hand, if λo > 1, the solution becomes unbounded as γ −→ 0+, since the

limit in (4.40) does not exist. This happens for sufficiently high reaction exponents m (and

consequently p since p = 2m − 3), a phenomenon formerly observed in a problem similar

to (4.10), where the distinction was made according to the magnitude of the eigenvalue of

the local operator [15]. There the local eigenvalue was denoted νloc and did not equal m

since the constraint p = 2m−3 was not imposed to solve the non-local eigenvalue problem

explicitly. Nonetheless, νloc > 1 at the limit γ −→ 0+ resulted, technically, in an infinite

Hopf bifurcation frequency. These artefacts are ultimately related to the invalidity of the

initial asymptotic expansions in (3.3) at the limit γ −→ 0+. Therefore, approximation

(4.36b) is in effect as along as γ is small, but not at the limit γ −→ 0+ itself, whereby ϵ in

(3.3) can tend to zero with the validity of the expansion intact.

4.1.5 Combining asymptotic solutions for the range 0 ! γ ! 1

The numerical solution to (4.18) was compared to the asymptotic solutions in the vicinity

of γ = 0, 1
2 , 1 in Figure 1. The asymptotic solution near γ = 1, equation (4.22), is virtually

indistinguishable from the true solution over the interval γ ∈ (0.8, 1). The asymptotic

solution near γ = 0, equation (4.38), is accurate over the interval γ ∈ (0, 0.5). The

intermediate asymptotic solution near γ = 1
2 , equation (4.35), gives a good approximation

over the interval γ ∈ (0.3, 0.7). Hence, solutions (4.38) and (4.35) have a significant region

of overlap, whereas to obtain the same for (4.22) and (4.35) more terms in the asymptotic

expansions are required. The difference stems from the fact that (4.38) had the correct

functional form retained, whilst (4.22) and (4.35) were cast into a power series form, the

correct functional form giving less accurate estimates for a series truncated after only a

few terms.

Figure 1 is typical for m = 3 and any q. As q is increased, two phenomena are observed.

One, the interval of γ between γ = 1 and γ = 1
2 , where the asymptotics (4.22) and (4.35)

fail to capture the true solution, grows. Two, the interval, where the asymptotics (4.38)

approximates the true solution accurately, although developed for 0 < γ ≪ 1, shrinks

slightly.

The corresponding Hopf bifurcation threshold τH is shown in Figure 2. The sub-diffusive

spike is more stable than the normal counterpart as is readily seen from the dependence

τH (γ): as the anomaly index γ diminishes, τH grows, i.e. the point of instability onset

occurs for higher τH in the anomalous system. Note the monotonicity of τH in γ, which

accords well with the underlying physical mechanism of this type of sub-diffusion, namely

memory. The dispersion of the reagents depends on the entire history of the motion

of each component, effectively slowing down all processes, reaction as well as diffusion.

Higher values of the time constant τo essentially mean that the interaction is sped up, and
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0 1
2

1
0

λH
γ= 1

2

λH
γ=1

γ

λ
H

Figure 1. Hopf bifurcation point λH for (p, q, m, s) = (3, 2, 3, 0): thick solid curve – full numerical
solution of (4.18); thin solid curve – asymptotic solution near γ = 1, equation (4.22); dashed curve –
asymptotic solution near γ = 0, equation (4.38); dotted curve – asymptotic solution near γ = 1

2 ,
equation (4.35).

0 1
τH

γ=1

τH
γ=0

γ

τ H

Figure 2. Hopf bifurcation threshold τH for (p, q, m, s) = (3, 2, 3, 0) versus anomaly exponent γ.

this increase must compensate for the overall hindered diffusion and reaction in order for

the bifurcation to occur.

When m is increased, the limit (4.40) ceases to exist since λo > 1 in (4.39). Quite

expectedly, it is still possible to employ the asymptotic solutions (4.22) and (4.35) for

γ " 1
2 . For γ < 1

2 , the bifurcation frequency λH quickly exceeds computable values. Rather

intriguingly, it is possible to use the asymptotic solution (4.38), developed for 0 < γ ≪ 1,

for γ " 1
2 . Apparently, the full functional form is captured so faithfully that the accuracy
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λ
H

Figure 3. Hopf bifurcation point λH for (p, q, m, s) = (9, 2, 6, 0): thick solid curve – full numerical
solution of (4.18); thin solid curve – asymptotic solution near γ = 1, equation (4.22); dashed curve –
asymptotic solution near γ = 0, equation (4.38), indistinguishable from the true solution over the
entire interval γ ∈ (0.5, 1); dotted curve – asymptotic solution near γ = 1

2 , equation (4.35).

is surprising: if m − q " 4, this solution is indistinguishable from the true one over the

entire interval γ ∈ (0, 1). Figure 3 depicts a typical example for γ ∈ ( 1
2 , 1). For γ < 1

2 , the

function λH (γ) blows up exponentially according to (4.36b).

4.2 Hopf point for s > 0

Re-writing equation (4.13) for a generic value of s as

√
1 + τH

(
ıλH

)γ
=

1
2m

2q

m −
(
ıλH

)γ − s, (4.41)

squaring, separating the real and imaginary parts and simplifying yields a system of two

real equations in τH and λH :

2τH (1+cos γ̃)λ3γ
H +λ2γ

H (1−s2−2mτH )−
(

m(1−s)+
1

2
m2q

)(
m(1+s)− 1

2
m2q

)
= 0, (4.42a)

(
4 cos2 γ̃−1

)
τHλ

2γ +2 cos γ̃ λγH
(
1− s2 −2mτH

)
+m2τH −2m(1− s2)−m2qs = 0. (4.42b)

It is possible to isolate τH from (4.42b) to read

1

τH
=

(
m − 2λγH cos γ̃

)2
− λ2γ

H

m2qs + 2(1 − s2)
(
m − λγH cos γ̃

) , (4.43)

which as expected upon the substitution of s = 0 recovers equation (4.16).
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Figure 4. A typical influence of the kinetic parameter s on the Hopf bifurcation point λH (right)
and threshold τH (left). Kinetic exponents used (m, p, q) = (3, 3, 3) and s = 0 (thick solid curves),
s = 1 (thin solid curves) and s = 2 (dashed curves).

If (4.43) is plugged into (4.42a), a quartic in λγH will ensue, generalising (4.18). It is

then possible to repeat the analysis of Section 4.1 and generalise all results for s > 0,

however the algebraic complexity of that is scarcely instructive. Therefore, to determine

the influence of the kinetic exponent s on the Hopf bifurcation point λH and threshold

τH system (4.42) was solved numerically. Figure 4 depicts the typical influence of s on

the graphs λH (γ) and τH (γ). One must bear in mind that for a set of kinetic exponents

(p, q, m), the values of s are limited by inequality (3.2). It is seen that there is little

qualitative distinction between the curves conforming to the various values of s.

5 Hopf bifurcation delay

The concept of passage through a bifurcation point as a means of exploration of the

point’s characteristics is not new [10, 14]. The effect of delay when crossing a Hopf

bifurcation point for system (3.1) with regular diffusion was recently addressed [18]. In a

classic setting the control parameter τo is to cross slowly the Hopf bifurcation threshold

τH . Introduce a slow time scale τ = ϵt, |ϵ| ≪ 1 (independent of the small diffusivity ϵ) to

have τo = τH + τ and accordingly a disturbance of the type

a = aeq + eψ(τ)/ϵϕ(x), h = heq + eψ(τ)/ϵη(x), |ϕ|, |η| ≪ 1, (5.1)
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where aeq, heq are the equilibrium solutions in (3.28). Substituting (5.1) into (3.1) will

require the fractional derivative of the exponential function exp
(
ψ(τ)/ϵ

)
. It was proved

formerly that the fractional derivative (2.1) of a simple exponential exp(λt) exists only if

the exponent λ has a positive real part [15]. An anologous constraint for a WKB type

exponent in (5.1) is obtained below.

Applying the operator in (2.1) to exp
(
ψ(τ)/ϵ

)
and changing the integration variable

from t to the slow scale τ yields

dγ

dtγ
eψ(τ)/ϵ = − sgn ϵ|ϵ|γeψ(τ)/ϵ

Γ (−γ)

∫ τ

0

1 − e

(
ψ(τ−ξ)−ψ(τ)

)
/ϵ

|ξ|γ+1
dξ. (5.2)

Assuming ψ(τ) possesses a Taylor expansion convergent for τ ∈ !, equation (5.2) becomes

dγ

dtγ
eψ(τ)/ϵ = − sgn ϵ|ϵ|γeψ(τ)/ϵ

Γ (−γ)

∫ τ

0

1 − eψ
′(τ)

(
−ξ+ 1

2 ξ
2 ψ′′(τ)
ψ′(τ) −+ ···

)
/ϵ

|ξ|γ+1
dξ, (5.3)

where the series in the numerator is taken in its entirety and does not constitute an

approximation for small ξ. Bear in mind that τ might be negative, however sgn τ = sgn ϵ.

Therefore for the integral to converge with an infinite upper bound ψ′(τ) > 0 must hold.

This constraint is a generalisation of the former demand that the exponent of a simple

exponential be positive [15].

Changing the integration variable again to ζ = ψ′(τ)ξ/ϵ gives

dγ

dtγ
eψ(τ)/ϵ = − eψ(τ)/ϵ

Γ (−γ) ψ
′γ(τ)

∫ τψ′(τ)/ϵ

0

1 − e
−ζ+ 1

2 σ
ψ′′ (τ)
ψ′2(τ)

ζ2−+ ···

ζγ+1
dζ. (5.4)

Generally, a fractional derivative of an exponential function is not an exponential, however

here the derivative at the limit ϵ −→ 0 is required. Equation (5.4) is integrated by parts

and it is observed that

1 − e
−ζ+ 1

2 ϵ ψ′′(τ)
ψ′2(τ)

ζ2−+ ···

ζγ

vanishes at the limit ζ −→ 0 by L’Hôpital’s rule and at the upper bound ζ = τψ′(τ)/ϵ,

since all terms in the infinite series are of order O
(
ϵ−1

)
. Hence

lim
ϵ−→0

dγ

dtγ
eψ(τ)/ϵ = lim

ϵ−→0

eψ(τ)/ϵ

Γ (1 − γ)
ψ′γ(τ)

∫ τψ′(τ)/ϵ

0

e
−ζ+ 1

2 ϵ ψ′′(τ)
ψ′2(τ)

ζ2−+ ···

ζγ

(
1−ϵ

ψ′′(τ)

ψ′2(τ)
+O

(
ϵ2

))
dζ

= lim
ϵ−→0

eψ(τ)/ϵ

Γ (1 − γ)
ψ′γ(τ)

∫ ∞

0
e−ζζ−γdζ = ψ′γ(τ) lim

ϵ−→0
eψ(τ)/ϵ , (5.5)

where the last equality was obtained with the definition of the Gamma function. The

ultimate limit in (5.5) must exist by the postulated disturbance form (5.1).

Using (5.5) in (3.1) and linearising, it is found that ψ′(τ) satisfies the same non-local

eigenvalue problem (4.10) as the generalised eigenvalue λ(0), solvable explicitly as before
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to give

ψ′γ(τ) = m − m2q

2

(
s +

√
1 + τo(τ)ψ′γ(τ)

) , (5.6)

generalising an analogous finding with regular diffusion [18].

5.1 Delay scenario

Hereinafter the derivation follows closely the method used for the analysis of delay in

(3.1) with regular diffusion [18] to facilitate an apposite comparison between the two

systems. The delay scenario is as follows: τo is set to an initial value τinit < τH and then

slowly increased past the threshold τH according to the slow time scale τ. When τo = τinit,

τ = 0 and hence (5.6) is supplemented by the initial condition ψ(0) = 0. Since ψ′(τ) < 0 as

long as τo < τH (eigenvalue in the left half plane), ψ(τ) is negative. As soon as τo crosses

τH , ψ′(τ) changes sign (Hopf bifurcation occurs and the eigenvalue begins its motion into

the right half plane), and ψ(τ) starts growing. So conceptually integration of ψ′(τ) ought

at some τ∗ > τH to reach a point, where ℜψ(τ∗) = 0. Using the correspondence between

ψ′ and λ, ψ′ was integrated analytically and a transcendental equation was obtained to

be solved for τ∗, the point beyond which the disturbance will for the first time have a

positive real part.

With anomaly caution is required since ψ′ > 0 must hold at all times, i.e. it is impossible

to integrate for any τo < τH . Nevertheless, it is possible to obtain the formal equation for

ψ upon the supposition the initial condition for (5.6) will not be ψ(0) = 0. Hence, taking

an initial point τi " τH , a final point τf > τi and τo = τi + τ with τ ∈ [0, τf − τi], a simple

integration yields

∫ τf−τi

0
ψ′(τ)dτ = ψ

(
τf − τi

)
− ψ(0) =

∫ τf−τi

0
λ(0)dτ =

∫ τf

τi

λ(0)dτo =

∫ λ(0)
f

λ(0)
i

λ(0) f′(λ(0)
)
dλ(0) ,

(5.7)

where

f
(
λ(0); γ

)
= τo

(
λ(0)

)
=

{(
m2q

2
(
m − λ(0)γ

) − s

)2

− 1

}
λ(0)−γ

. (5.8)

Integrating by parts,

ψ
(
τf − τi

)
− ψ(0) = λ(0)

f f
(
λ(0)

f ; γ
)

− λ(0)
i f

(
λ(0)

i ; γ
)

−
(
F

(
λ(0)

f ; γ
)

− F
(
λ(0)

i ; γ
))

,

F
(
λ(0); γ

)
=

∫
fdλ(0). (5.9)

With regular diffusion the integration of f is fairly straightforward, yielding (with λ

replacing λ(0) as the classic eigenvalue)

F
(
λ; 1

)
=

m4q2

4m

1

m − λ
+

((m2q

2m
− s

)2
− 1

)
ln λ− m2q

m

(
m2q

4m
− s

)
ln

(
m − λ

)
. (5.10)

For the particular case (p, q, m, s) = (3, 2, 3, 0), the result was formerly obtained [18].
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To generalise (5.10) for the anomalous case some ingenuity must be summoned. The

next two sections address the computation of F
(
λ(0); γ

)
and the limit γ −→ 1−.

5.2 Computation of F for 0 < γ < 1

Rearranging (5.8) into a form expedient for integration,

f
(
λ(0)

)
=

m4q2

4m

1
(
m − λ(0)γ

)2
+

m2q

m

(
m2q

4m
−s

)
1

m − λ(0)γ
+

((m2q

2m
−s

)2
−1

)
λ(0)−γ

. (5.11)

Hence the computation of F involves two integrals

I1 =

∫
dλ(0)

m − λ(0)γ
and I2 =

∫
dλ(0)

(
m − λ(0)γ

)2
. (5.12)

To compute I1 change the integration variable according to λ(0)γ = mt to obtain

I1 =
m

1
γ −1

γ

∫
t

1
γ −1

1 − t
dt, 0 < t < 1 . (5.13)

The interval 0 < t < 1 ensues by the virtue of all relevant eigenvalues lying in the right

half plane, but to the left of m, the eigenvalue of the local operator, and is essential for

proper convergence. Then,

∫
t

1
γ −1

1 − t
dt =

∫
t

1
γ

(1

t
+

1

1 − t

)
dt =

t
1
γ

1
γ

+

∫
t

1
γ +1

(1

t
+

1

1 − t

)
dt = t

1
γ

n∑

j=0

tj

1
γ + j

+

∫
t

1
γ +n

1 − t
dt .

Since 0 < t < 1, the limit n −→ ∞ exists and

∫
t

1
γ −1

1 − t
dt = γ t

1
γ

∞∑

j=0

1
γ t

j

1
γ + j

= γ t
1
γ 2F1

(
1

γ
, 1;

1

γ
+ 1; t

)
, (5.14)

where 2F1

(
a, b; c; t

)
is Gauß’s hypergeometric function defined by

2F1

(
a, b; c; t

)
=

∞∑

n=0

a(n)b(n)

c(n) n!
tn, κ(n) = κ(κ+ 1) · . . . · (κ+ n − 1), κ(0) = 1. (5.15)

Hypergeometric functions have been known to appear in similar contexts [21]. Analog-

ously

I2 =
m

1
γ −2

γ

∫
t

1
γ −1

(1 − t)2
dt, 0 < t < 1 , (5.16)

and
∫

t
1
γ −1

(1 − t)2
dt = t

1
γ −1

( 1

1 − t
− 1

)
− (1 − γ)t

1
γ 2F1

(
1

γ
, 1;

1

γ
+ 1; t

)
. (5.17)



Explicitly solvable eigenvalue problem 25

Combining I1 and I2,

F
(
λ(0); γ

)
=

m4q2λ(0)1−γ

4γm2

(
m

m − λ
− 1

)
+

((m2q

2m
− s

)2
− 1

)
λ(0)1−γ

1 − γ

+
m2q

m2

(
m2q

4m

(
2 − 1

γ

)
− s

)
λ(0)

2F1

(
1

γ
, 1;

1

γ
+ 1;

λ(0)

m

)
. (5.18)

Expression (5.18) was intentionally retained in its not fully simplified form for a more

convenient comparison with the case of regular diffusion, where γ = 1.

5.2.1 Limit lim
γ−→1−

F
(
λ(0); γ

)

The comparison of (5.18) and (5.10) is not immediate. It is readily discerned that upon

taking γ = 1 the first term in (5.18) matches that in (5.10) up to an additive constant.

The functional form of the second term in (5.18), i.e. λ(0)1−γ
/(1 − γ) corresponds to ln λ

in (5.10). In this sense, (5.10) is not a proper limit of (5.18) as γ −→ 1−: if γ = 1 is set

prior to the integration, one obtains the logarithm, whereas at γ < 1 the fractional power

ensues. To compare the third term, set γ = 1, λ(0) -−→ λ and observe that (for instance by

a Taylor expansion)

2F1

(
1, 1; 2; t

)
= −1

t
ln(1 − t), (5.19)

so again the terms match up to an additive constant. Since the integrals I1 and I2
were indefinite and a transformation of variables was performed, the presence of these

additional constants is to be expected and is of no importance, as (5.9) involves a difference

of two values of F evaluated at distinct points τf and τi.

Normal diffusion is a special limit, often singular, of a whole family of processes, and

was historically favoured because of the mathematical simplicity of its analysis. The above

comparison facilitates the distinction between the regular and singular parts of this limit.

The power law λ(0)1−γ
becomes a constant when γ = 1. Consequently, the dependence

λ(0)1−γ
/(m−λ) becomes purely hyperbolic. In another instance, ostensibly the same power

law λ(0)1−γ
/(1 − γ) turns into a logarithmic growth of the disturbance amplitude with

normal diffusion.

6 Conclusion

The Gierer–Meinhardt model was endowed with a memory operator in the form of a

fractional time derivative acting on the concentration of both activator and inhibitor

species. The modification entails a spike solution in an asymptotic regime, where the ratio

of the reagents’ diffusivities is of order O
(
ϵ2γ

)
, 0 < γ < 1, an improvement by comparison

to the classic O
(
ϵ2

)
known to be unrealistic.

The spike on an infinite line was shown to retain its normal shape with exponentially

decaying tails. In a stationary case the only effect of anomaly is manifested through the

inner layer variable relating to the breadth of the spike, whereas with drift the influence of

anomaly is seen in the drift time scale as well as an asymmetry of leftward and rightward

motion.
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The spike stability was compared with the normal case for a class of disturbances

evolving exponentially in time to leading order. To this end an anomalous eigenvalue–

eigenfunction pair was introduced and a non-local eigenvalue problem was derived. Due

to a peculiarity of the fractional derivative operator it is possible to trace the eigenvalues

only in the right half of the complex plane. The anomalous eigenvalue problem can be

obtained from the regular concominant through the mapping λ -−→ λ(0)γ , permitting the

construction of an anomalous eigenvalue trajectory by extracting the part of the normal

trajectory satisfying | arg λ| ! 1
2πγ and mapping it by the 1/γ root transformation.

For the special case, where the kinetic exponents satisfy p = 2m − 3, the eigenvalue

problem is explicitly solvable, similarly to the system with regular diffusion. The Hopf

bifurcation frequency λH and threshold τH were obtained for the case s = 0, extending

former results obtained for a particular set of (p, m) with normal diffusion to arbitrary

(p, m) as well as γ. Asymptotic solutions were constructed near the representative values

γ = 0 (strongest anomaly), γ = 1
2 (mid-range anomalous value) and γ = 1 (regular

diffusion), and the extent of their accuracy explored by juxtaposition to the full numerical

solution. Parameter regimes, where the asymptotic solution captured the true solution

exceptionally well, were outlined. The case s > 0 was found to be qualitatively similar.

A bifurcation delay was analysed through a WKB type of disturbance at the onset of

Hopf instability. Again, former results derived for a particular set of kinetic exponents and

regular diffusion were extended here to any quadruple (p, q, m, s) and anomaly index γ.

The sub-diffusive Gierer–Meinhardt system is a phenomenological model that facilitates

the study of the effect of memory on spike patterns. Since the memory operator does not

possess a proper limit at γ −→ 1−, this conceptual discontinuity transcends into some of

the expressions generalising the results known for simple diffusion. The dearth of proper

limit at γ −→ 1− is a manifestation of the singularity of the simple diffusion as a limit of

a family of continuous processes.

Full numerical simulation of system (3.1) is beyond the scope of this paper. The kernel

singularity of the fractional operator (2.1) in conjunction with the slow algebraic decay

makes such a simulation highly non-trivial. This might be an interesting topic for future

research. In addition, observation of numerical behaviour in the stable regime (τ < τH )

might furnish the furtherance of an analytical description therein. Another line of enquiry

worthy of attention is an extension of the stability theory to classes of perturbations

other than exponential and designation of the most unstable type of disturbance for the

pertinent type of memory operator.
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