Bounding the Size of Graphs without K_m-minors.

Let $\varepsilon(G)$ be the number of edges in a graph G and let $\nu(G)$ denote the number of vertices. For a vertex v in G, let $d_G(v)$ denote the number of edges incident with v, which is called the degree of v. We let $N_G(v)$ denote the neighbour set of v; that is, it is the set of vertices which are joined by an edge to the vertex v in G. Using a simple counting argument, one can show that

0.1 Lemma
\[\sum_{v \in V(G)} d_G(v) = 2\varepsilon(G). \]

A subgraph H of a graph G is graph obtained from G by first choosing the vertices of H to be some subset, say X, of the vertices of G. Secondly, one chooses the edges of H to be some subset of the edges G which join vertices in X. If one choose all the edges in G which connect vertices in X, then we say that H is the subgraph induced by X. Let K_m denote the complete graph on m vertices. We have the following theorem of Mader:

0.2 Theorem (Mader)
Let G be a simple graph. Then for all $m = 2, 3, \ldots$, if G has no K_m-minor, then $\varepsilon(B) \leq (2^m - 1)\nu(G)$.

Proof Suppose that the theorem is false. Let G be a minimum counterexample; that is, a counterexample to the theorem which has the fewest number of vertices. We have $\varepsilon(G) > (2^m - 1)\nu(G)$. By our choice, the theorem is true for all simple graphs with fewer than $\nu(G)$ vertices. Pick a vertex v in G where $d_G(v) \geq 1$. Let H denote the subgraph of G induced by the neighbour set of G, $N_G(v)$. Since G has no K_m-minor, it follows that H has no K_{m-1}-minor. Furthermore, since H has fewer vertices than G, the theorem is true for H and therefore, $\varepsilon(H) \leq (2^{m-1} - 1)\nu(H) \leq (2^{m-1} - 1)(\nu(G) - 1)$. By the Lemma 0.1, $2\varepsilon(H) = \sum_{v \in V(H)} d_H(v)$. Thus $\sum_{v \in V(H)} d_H(v) \leq 2 \cdot (2^{m-1} - 1)\nu(H)$. Consequently, the average degree in H is at most $2^m - 2$. We can therefore pick a vertex $w \in V(H)$ where $d_H(w) \leq 2^m - 2$. Let $e = vw$ be the edge joining v and w. Let G' be the graph obtained by contracting e. By contracting e, we may create multiple edges, i.e. pairs of edges joining the same vertices. This means that G' is possible not simple. In fact, the number of multiple edges created is exactly $d_H(w)$. Why? Because each neighbour w' of w in H is joined to both w and v by edges, and hence belongs to a triangle containing e. Let G'' be the graph obtained from G' by deleting one edge from each pair of multiple edges. Then G'' is simple and

$\varepsilon(G'') = \varepsilon(G') - d_H(w) = \varepsilon(G) - 1 - d_H(w) > (2^m - 1)\nu(G) - 1 - (2^m - 2) = (2^m - 1)(\nu(G) - 1) = (2^m - 1)\nu(G'').$
Thus $\varepsilon(G'') > (2^m - 1)\nu(G'')$, and G'' has no K_m-minor because, G has no K_m-minor. This contradicts our assumption that G was a minimum counterexample. Thus there can be no counterexamples and hence the theorem is true.

Let $h_m(n)$ denote the maximum number of edges a simple graph with n vertices and no K_m-minor can have. We know the following:

- $h_m(n) \geq (m - 2)n - \binom{m-1}{2}$.
- equality holds for $m = 3, \ldots, 7$.

0.3 Theorem

Let G be a simple graph with no K_4-minor. Then $\varepsilon(G) \leq 2\nu(G) - 3$.

Proof We follow that same proof as for Theorem 0.2, choosing a minimum counterexample, etc. Notice that since H has no K_3-minor, and it can have no cycles (any cycle can be contracted to form a triangle). Such a graph must have a vertex of degree 1. So we may pick $w \in V(H)$ such that $d_H(w) = 1$. Now the edge $e = vw$ belongs to exactly one triangle of G. Let G' and G'' be as before. Then

$$
\varepsilon(G'') = \varepsilon(G') - d_H(w) = \varepsilon(G) - 2 > 2\nu(G) - 5 = 2(\nu(G) - 1) - 3 = 2\nu(G'') - 3.
$$

Then G'' would be a counterexample to the theorem, a contradiction.

0.4 Question

Is it true that if G is a simple graph having no K_m-minor, then G contains an edge belonging to at most 2^{m-1} triangles? What about m triangles?

0.5 Question

Is it true that if M is a simple binary matroid with no K_4-minor, then there is an element which belongs to at most three triangles?

0.6 Question

Is it true that if M is a simple binary matroid with no K_5-minor, then there is an element which belongs to at most three triangles?

- To answer the first question, maybe we could refine the proof of Mader’s theorem to yield an answer.
- To answer the second question, maybe one might try and find out if there is a “structure” theorem for binary matroids not having a K_4-minor. Knowing the structure of these matroids may enable one to find an element which belongs to at most two triangles.
Answering the third question, is anybody’s guess! I suggest trying to find empirical evidence. For example, suppose we just generate a bunch of matroids with no K_5-minor at random, and then test whether each contains an element belonging to at most 3 triangles. Either find a counterexample, or bolster the case for it being correct.