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We develop the theory for a constant-beamwidth transducer (CBT) formed by an unbaffled,
continuous circular-arc isophase line source. Appropriate amplitude shading of the source
distribution leads to a far-field radiation pattern that is constant above a cutoff frequency de-
termined by the prescribed beam width and arc radius. We derive two shading functions, with
cosine and Chebyshev polynomial forms, optimized to minimize this cutoff frequency and
thereby extend constant-beamwidth behavior over the widest possible band. We illustrate the
theory with simulations of magnitude responses, full-sphere radiation patterns and directivity
index, for example arrays with both wide- and narrow-beam radiation patterns. We further
extend the theory to describe the behavior of circular-arc arrays of discrete point sources.

0 Introduction

There is much interest in the design of acoustic sources
whose radiation pattern is substantially independent of fre-
quency. Such a source exhibits constant directivity [2]—
a weaker criterion that is often used in practice. Much of
this interest stems from work by Toole and others (see [3]
and references therein) showing that constant directivity is
correlated with subjective perception of quality in stereo
reproduction. Constant directivity beamforming also has
wide application to sensor and transducer arrays in audio,
broadband sonar, ultrasound imaging, and radar and other
remote sensing applications [4, 5, 6, 7].

Keele [8, 9, 10, 11, 12] has reported extensively on
a constant-beamwidth transducer (CBT) formed by a
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circular-arc array with amplitude shading. That work fol-
lowed on that of Rogers and Van Buren [4] who showed
that a transducer with frequency-independent beam pat-
tern can be formed by a spherical cap with amplitude
shading based on a Legendre function. Fortuitously, when
Legendre shading is used on a circular arc, a substantially
frequency-independent radiation pattern results in that case
as well [8, 9].

Despite the demonstrated advantages of circular-arc
CBT line arrays, to date there has not been a theoretical
account of Keele’s empirical results. Legendre shading in
particular has been given only post hoc justification; shad-
ing functions adapted to circular arrays have not been de-
veloped.

Circular arrays have been analyzed extensively in the
EM antenna literature [13, 14, 15] but there they seem to
have been regarded as narrow-band transducers only [14,
p. 192]. Several authors have considered circular arc arrays
with uniform excitation [16, 17, 18] but these do not per-
form well as broadband radiators. In the audio field there
has been significant work on beam-forming techniques for
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circular arrays of both microphones [6, 7, 19, 20, 21, 22]
and loudspeakers [23, 24, 25, 26, 27, 28, 29]. However,
the potential for broadband constant directivity via a sim-
ple frequency-independent amplitude-only shading of an
unbaffled circular-arc array does not appear to be widely
known.

The aims of the present work are twofold: to pro-
vide a theoretical foundation to account for the observed
constant-directivity behavior of amplitude-shaded circular-
arc arrays, and to derive improved shading functions
adapted to these arrays. The paper is structured as follows.
In the following section we review the theory for acoustic
radiation from an amplitude-shaded, unbaffled circular arc.
We then use this theory to derive conditions on the shad-
ing function that guarantee a frequency-independent radi-
ation pattern. On this basis, in Sec. 2 we develop suitable
families of optimal shading functions that can be used to
synthesize a wide variety of radiation patterns. In Sec. 3
we present results of simulations that illustrate and con-
firm several key aspects of our theory. Sec. 4 shows how
our theory can be extended to treat discrete arrays.

1 Theory

1.1 Radiation from a Circular Array
Consider a time-harmonic line source in the form of a

circle of radius a in free space, as shown in Fig. 1. The cir-
cle lies in the horizontal xy-plane with its center at the ori-
gin. (This orientation facilitates use of conventional spher-
ical coordinates; in Keele’s prior work [8, 9] the array is
oriented vertically.) We take the x-axis (θ = φ = 0) as the
“on-axis” direction of the resulting radiation pattern. We
assume the source distribution is continuous and iso-phase,
with amplitude that varies with polar angle α according
to a dimensionless, real-valued and frequency-independent
shading function S(α) (often called the amplitude taper or
aperture function in the EM antenna literature). It proves
convenient to consider a full circular array at first; later we
restrict the active part of the array to an arc by setting S(α)
to zero on part of the circle.

Referring to Fig. 1, consider a representative point
source element at Q with time-dependence eiωt . The ra-

Fig. 1: Circular line source geometry. The shaded arc is
the active part of the array considered in the balance of the
paper.

diated pressure at O is then e−ikR/R (up to a multiplicative
constant) where k is the wave number [30, p. 311]. Sum-
ming the pressure contributions at O from all elements of
the array gives the total pressure p via the Rayleigh-like
integral

p(r,θ ,φ) =
∫ 2π

0
S(α)

e−ikR

R
dα (1)

where

R =
√

a2 + r2 − 2ar cosφ cos(θ − α)

≈ r − acosφ cos(θ − α) (r � a). (2)

On making the usual far-field (r � a) approximations
eq. (1) gives

p =
e−ikr

r

∫ 2π

0
S(α)eikacosφ cos(θ−α) dα (3)

We will assume that the shading function S(α) has even
symmetry about α = 0 so it can be expressed as a Fourier
cosine series

S(α) =
∞

∑
n=0

an cosnα (4)

(the EM antenna literature calls this an expansion in am-
plitude modes or circular harmonics, as opposed to the
phase modes einα [31].) In the following we refer to each
term in eq. (4) as a shading mode. Substituting eq. (4)
into (3) gives the far-field pressure radiated by a circular
array (with u = θ − α),

p =
e−ikr

r

∫ 2π

0

∞

∑
n=0

an cos
(
n[u + θ ]

)
eikacosφ cosu du

=
e−ikr

r

∞

∑
n=0

an

[
cos(nθ)

∫ 2π

0
cos(nu)eikacosφ cosu du︸ ︷︷ ︸

2πinJn(kacosφ)

− sin(nθ)
∫ 2π

0
sin(nu)eikacosφ cosu du︸ ︷︷ ︸

0

]

=
e−ikr

r

∞

∑
n=0

an fn(kacosφ)cosnθ , (5)

where the radiation mode amplitudes fn are given by

fn(x) = 2πinJn(x) (6)

and Jn is a Bessel function of the first kind [32], with
x ≡ kacosφ . Note that the frequency enters only via the
dimensionless quantity ka which is the ratio of array cir-
cumference to wavelength, i.e. the “acoustic size” of the
array. Fig. 2 plots the first several mode amplitudes | fn(ka)|
(in the plane of the array φ = 0) as a function of frequency.

Eq. (6) for the mode amplitudes of an unbaffled circular
array appears throughout the literature on circular arrays
of sources and receivers [7, 13, 15, 31, 33]. We have in-
cluded its derivation here in the interest of a self-contained
presentation, and to avoid confusion that might result from
different coordinate systems used in other works. It should
be noted that this expression for the mode amplitudes is
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essentially unchanged if, instead of the cosine series of
eq. (4), the shading function is expressed as a sum of com-
plex Fourier modes aneinα , as is often the case elsewhere
in the literature.

If the array is mounted on an axisymmetric baffle then
only the formula for the mode amplitudes changes. Closed-
form expressions for the mode amplitudes when the baf-
fle is in the form of a sphere, or a finite- or infinite-length
cylinder, are collected in [7]. The case of a circular-arc ar-
ray in the corner of a wedge-shaped propagation space is
treated analytically in [29].

Eq. (5) reveals much about the behavior of circular ar-
rays:

r Each cosnα shading mode gives rise to a corresponding
far-field radiation mode of the same cosnθ polar form.
Eq. (5) represents the total far-field pressure as a super-
position of these radiation modes.r Each shading mode is mapped to the far field by a factor
fn(kacosφ) that determines its radiation strength. It is
apparent in Fig. 2 that each shading mode exhibits a se-
ries of nulls (comb filtering) in its magnitude response.
Physically, these nulls are caused by destructive inter-
ference between source elements on opposite sides of
the array. Eqs. (5)–(6) show that the nulls occur where
kacosφ coincides with a zero of the Bessel function Jn.r Owing to these nulls, a full-circle array with amplitude
shading S(α) = cosnα cannot produce a usable broad-
band response: at any point in the far field there are
frequencies at which the radiated pressure is zero. This
is the “mode stability” problem inherent to circular ar-
rays [15]. Nevertheless, in Sec. 1.3 we show that limit-
ing the active part of the array to an arc of less than 180◦

gives a well-behaved broadband response.

1.2 Limiting Cases
1.2.1 Low Frequency

At low frequency we can use the asymptotic form [32]

Jn(x) ≈
1
n!

( x
2

)n
(x� 1) (7)

−18

−12

−6

0

|f n
(k
a
)|
[d
B
]

100 101

ka

n = 0

n = 1

n = 2

Fig. 2: Mode amplitudes: on-axis far-field pressure, as a
function of dimensionless frequency ka, for radiation from
a circular array with cos(nα) amplitude shading.

in eq. (5) to obtain the far-field pressure

p ≈ 2π
e−ikr

r

∞

∑
n=0

an
in(ka)n

2nn!
cosn

φ cos(nθ) (ka� 1).

(8)
Thus the strength of the nth radiation mode falls off as
(ka)n (hence 6n dB/oct) toward low frequency, as illus-
trated in Fig. 2. All modes with n > 0 radiate inefficiently
at low frequency. At low frequency (ka→ 0) the limit-
ing radiation pattern is determined by the leading-order
term in (8). In particular, if a0 6= 0 then the low-frequency
pattern is omni-directional: the array radiates like a point
source at the origin. Alternatively, if a0 = 0 but a1 6= 0
then the array exhibits dipole radiation at low frequency.

1.2.2 High Frequency
Using the asymptotic form [32]

Jn(x) ≈
√

2
πx

cos(x− n π

2 − π

4 ) (x� n) (9)

in eq. (6) gives a high-frequency approximation for the
mode amplitudes,

fn(x) ≈
√

8π

x

{
cos(x− π

4 ) n even
isin(x− π

4 ) n odd.
(10)

Note that the nulls of even-order modes coincide with
peaks of the odd-order modes, and vice versa; this obser-
vation plays a key role in the following section.

1.3 Conditions for Constant Radiation Pattern
At sufficiently high frequency, such that x ≡ kacosφ �

n for all non-negligible terms in the Fourier expansion of
the shading function in eq. (4), we can substitute the limit-
ing form from eq. (10) into (5) to obtain the far-field pres-
sure

p ≈ e−ikr

r

√
8π

x

[
Se(θ)cos(x− π

4 ) + iSo(θ)sin(x− π

4 )

]
(11)

where

Se(θ) = ∑
n even

an cosnθ , So(θ) = ∑
n odd

an cosnθ . (12)

Eq. (11) gives the pressure magnitude

|p| = 1
r

√
8π

x

√
S2

e(θ)cos2(x− π

4 ) + S2
o(θ)sin2(x− π

4 ).

(13)
Eq. (13) has a simple physical interpretation: with in-

creasing frequency the polar pattern in the plane of the ar-
ray alternates periodically between the odd- and even-order
patterns |So(θ)| and |Se(θ)|. In particular, if |Se(θ)| =
|So(θ)| for all θ then the radiation pattern is unchanging
with frequency; in this case eq. (13) gives the far-field pres-
sure

|p(r,θ ,φ)| = 1
r

√
8π

ka

∣∣Se(θ)
∣∣

√
cosφ

. (14)
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Critically for our purposes the amplitude of this radiation
pattern varies with frequency but its polar pattern does
not.

Thus, the far-field radiation pattern of a circular array
will be independent of frequency provided the amplitude
shading function S(α) satisfies the following conditions:

1. S = So + Se with So, Se given by eq. (12) and satisfying
|So| = |Se|.

2. For all non-negligible coefficients an in the cosine series
for S we have kacosφ � n.

(These conditions are identical to those given in [5] for ra-
diation from a spherical array, except in that case the an are
coefficients of the shading function expanded in spherical
harmonics.)

In Appendix A.1 we show that condition 1 is equiva-
lent to requiring that, for each θ , at most one of S(θ) and
S(π − θ) is non-zero. This holds e.g. if the active part of
the array is restricted to an arc of 180◦ or less. This in turn
implies the radiation pattern

|p(r,θ ,φ)| = 1
r

√
2π

kacosφ

{
|S(θ)| −π

2 < θ < π

2
|S(π − θ)| π

2 < θ < 3π

2 .

(15)
Several remarks are in order:

r Conditions 1 and 2 together ensure a constant radia-
tion pattern above a certain cutoff frequency determined
by the requirement that kacosφ � nmax where nmax is
the largest n for which the shading mode amplitude an
is non-negligible. For greater out-of-plane angles φ the
cutoff frequency is correspondingly higher.r Above cutoff, eq. (14) predicts a well-behaved response
without the nulls present in the individual radiation
modes. Indeed, the condition |Se(θ)| = |So(θ)| ensures
that the response nulls of the odd-order modes are ex-
actly filled in by peaks of the even-order modes, and vice
versa (see remark in Sec. 1.2.2).r The limiting radiation pattern given by eq. (14) is bi-
directional and symmetric across the yz-plane in Fig. 1
(see Appendix A.1).r The radiation pattern in eq. (14) is unchanged if the shad-
ing is reflected across the yz-plane. Thus, in the far field
it is immaterial whether it is the “front” or “back” side
of the array that is active.r Provided the active part of the array is restricted to an arc
of 180◦ or less, eq. (15) shows that the limiting radiation
pattern is identical to the shading function in any plane
parallel to the array (constant φ ).r Eq. (14) predicts a smooth (ka)−1/2 (hence −3 dB/oct)
magnitude response everywhere in the far field. As noted
in [10], in a practical device this high-frequency rolloff
may require compensatory equalization. The required
3 dB/oct equalizer response (i.e. a blueing filter) can be
well-approximated by a low-Q high-pass shelving filter,
or by swapping poles with zeroes of any of the well-
known pinking fiters [34].

r Eq. (15) shows that the limiting high-frequency pattern is
the product of an in-plane pattern (identical to the shad-
ing function) and a broad 1/

√
cosφ out-of-plane pattern.

The out-of-plane pattern exhibits amplitude peaks on the
z-axis perpendicular to the circular array. These peaks
are due to the fact that radiation from all elements of
the array arrives in-phase on the z-axis; elsewhere there
is some destructive interference among source elements.
This interference increases with frequency, causing the
3 dB/oct rolloff noted above.r To minimize the cutoff frequency (and thereby achieve a
constant radiation pattern over the widest possible band)
we need a shading function whose Fourier coefficients
an are of the lowest order possible. Sec. 2 considers the
design of such a function.

Each of these theoretical results has been corroborated
by Keele’s extensive simulations and measurements of
circular-arc CBT arrays [8, 9, 10, 12].

1.4 Discussion
Careful consideration of Fig. 2 together with eq. (5)

(and the limiting cases given by eqs. (8) and (14)) yields
a complete characterization of the radiating behavior of an
amplitude-shaded circular-arc array.

In the low-frequency limit (ka� 1) only the n = 0
shading mode radiates into the far field. Directivity control
is lost below the array’s cutoff frequency: the array behaves
as a point source, with omni-directional radiation pattern.
(By contrast, beam-forming can achieve significant direc-
tivity even at low frequency [23, 24, 25, 26, 27], but with
much higher implementation complexity and requiring a
large amount of compensatory gain.)

With increasing frequency, successively higher-order
shading modes begin to “turn on” and contribute to the
far-field radiation pattern. The superposition of radiation
modes in eq. (5) yields a radiation pattern that changes with
frequency throughout a transition band around ka ≈ 1 (i.e.
as the array goes from being acoustically small to large).

Above the array’s cutoff frequency (ka ≈ nmax) all shad-
ing modes are actively radiating into the far field. The su-
perposition of radiation modes generates the frequency-
independent, bi-directional pattern given by eq. (14). With
increasing frequency above cutoff there are no further
shading modes to “turn on”, so that the radiation pattern
ceases to change; this is the physical origin of constant di-
rectivity behavior of circular-arc (CBT) arrays.

In other words, a circular array acts as a low-pass spa-
tial filter that determines which shading modes pass to the
far-field response (see e.g. [15, p. 27]). The bandwidth of
this filter varies with acoustic frequency: at any given fre-
quency, shading modes of order n < ka pass through to
the far field; higher-order modes n > ka are strongly atten-
uated (cf. Fig. 2). As the frequency increases the filter’s
pass-band widens, passing modes of sequentially higher
order. If a finite number of Fourier modes are present in
the shading function, then at sufficiently high frequency
all these modes will fall within the filter’s pass-band; the

4 J. Audio Eng. Soc., Vol. ?, No. ?, 2019 ?



PAPERS CIRCULAR-ARC LINE ARRAYS

shading function is then replicated in the far field and the
radiation pattern ceases to change with frequency.

For an array that is active only on an arc |θ | ≤ θ0 we
have nmax ≈ π/(2θ0) (see App. A.2). In terms of the wave-
length λ and array length L = a2θ0, the cutoff criterion
ka > nmax can then be expressed as λ < 2L. Thus, as for
linear and other array geometries, circular-arc arrays are
able to achieve significant directivity only when the array
is larger than the wavelength.

It should be noted that if the array is mounted on a long
cylindrical baffle then the results above are essentially un-
changed, but obtained more readily as a special case of the
analysis carried out in [28]. Indeed, provided the mode am-
plitudes fn(ka) ≡ f (ka) become asymptotically indepen-
dent of n for ka� nmax (as is the case for an infinitely long
cylindrical baffle [26, 28]) eq. (5) for the radiation pattern
gives

p =
e−ikr

r
f (kacosφ)S(θ) (ka� nmax). (16)

Thus the radiation pattern in the plane of the array is again
frequency-independent and identical to the shading func-
tion. However, unlike the unbaffled case analyzed here
(compare eqs. (15) and (16)) the shading function is not
reflected into the rear radiation pattern, hence a baffled ar-
ray enjoys greater directivity control. Also, in the baffled
case the active part of the array need not be restricted to an
arc of 180◦ or less.

2 Optimal Amplitude Shading

Keele [8] demonstrated that the choice of shading func-
tion is critical to achieving broadband constant directivity
with a circular-arc array. As shown in the previous section,
a good shading function S(θ) will have its Fourier spec-
trum concentrated in its lowest-order terms, while being
non-zero only on an arc |θ | ≤ θ0 ≤ π

2 (θ0 determines the
angular coverage of the active part of the array). The gen-
eral form of such a shading function is shown in Fig. 3.

Legendre shading, developed for spherical arrays in [4],
has been used to good effect by Keele in his work on CBT
arrays [8, 9, 10, 11]. Since Legendre functions serve to
minimize the amplitude of higher-order terms when the
shading function is expanded in spherical harmonics [4]
(which are themselves polynomials in cosθ ) it is not sur-
prising that Legendre function shading does a reasonably
good job of satisfying the criteria outlined above. How-

S(θ)

|θ|θ0 ππ
2

1

Fig. 3: Shading function restricted to the arc |θ | ≤ θ0.

ever, being adapted to a spherical rather than circular radi-
ator, Legendre function shading is not the optimal choice.
In the Appendices we develop two new shading functions
with the goal of constant directivity over the widest possi-
ble band.

Appendix A.2 shows that the cosine shading

S(θ) =

{
cos
(

π

2 · θ

θ0

)
|θ | ≤ θ0

0 θ0 < |θ | ≤ π
(17)

is optimal in that each of its Fourier coefficients |an| is at
a local minimum (as a function of θ0) for all n > π/(2θ0).
This serves to concentrate the shading modes in the lowest
orders.

Remarksr The cosine shading (17) is analogous to (but much sim-
pler than) the Legendre function Pν(cosθ) developed
in [4] and used elsewhere by Keele; they are identical
in the case θ0 = π

2 .r The parameter θ0 controls the beam width of the array.
The design equations for cosine shading are particularly
simple: we have θ0 = 3

2 θ6 where θ6 is the desired off-
axis angle at which the level falls to −6 dB. By con-
trast, the design equations for Legendre shading cannot
be expressed in closed form, and require numerical root-
finding as well as evaluation of the rather obscure Leg-
endre functions.r Decreasing θ0 (narrowing the beam width) increases the
index nmax above which the cosine series coefficients an
are minimized; this leads to a higher cutoff frequency for
a given arc radius.

Appendix A.3 shows that the Chebyshev polynomial
shading

S(θ) =

{
TN

(
2 · 1+cosθ

1+cosθ0
− 1
)
|θ | ≤ θ0

0 θ0 < |θ | ≤ π,
(18)

where TN is the Nth Chebyshev polynomial, is optimal in
the sense that it is close to a degree-N polynomial in cosθ ,
so its Fourier coefficients an are concentrated in low or-
ders n ≤ N. Chebyshev shading is in some ways superior to
both cosine shading and the Legendre shading used in [8],
as we illustrate in the following section. Together, the pa-
rameters N and θ0 control the beam width and arc cover-
age. For a given coverage angle θ0, increasing N results in
a narrower beam.

A thorough comparison of these shading functions and
their radiating behaviors is beyond the scope of this pa-
per. We merely note in passing that cosine shading ap-
pears to allow for the widest possible beam pattern. Cheby-
shev shading can yield very narrow patterns and (especially
for greater values of the polynomial order N) can achieve
smoother frequency response at the expense of greater arc
coverage. The following section presents detailed simula-
tions of two representative examples.
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3 Examples

To confirm and illustrate key aspects of our theoretical
results above, here we present simulations of two particular
circular-arc arrays designed to achieve broadband constant
directivity, but with different beam widths. One is a wide-
beam array with the cosine shading (see Appendix A.2)

S(θ) =

{
cos
( 9

7 θ
)
|θ | ≤ 70◦

0 |θ | > 70◦
(19)

which falls to−6 dB at 47◦ off-axis. The other is a narrow-
beam array with the degree-6 Chebyshev polynomial shad-
ing (see Appendix A.3)

S(θ) =

{
T6
(
2 · 1+cosθ

1+cos52◦ − 1
)
|θ | ≤ 52◦

0 |θ | > 52◦
(20)

which falls to −6 dB at 25◦. Here the arc cutoff angles of
70◦ and 52◦ are rather arbitrary; they were chosen by trial
and error to make the magnitude responses in Fig. 6 rea-
sonably smooth.

The shading functions in eqs. (19)–(20) are plotted in
Fig. 4, together with some other shading functions that
achieve the same beam widths. Chebyshev shading, espe-
cially with higher polynomial degree, gives a more grad-
ual taper near the end of the arc. This results in smoother
frequency response (see Fig. 7 below) at the expense of
requiring greater arc coverage for a given beam width.

3.1 Magnitude Response
Fig. 5 shows the raw (unequalized) far-field magnitude

responses at various angles θ in the plane of an array with
the narrow-beam shading of eq. (20). These were calcu-
lated by numerical quadrature (via an adaptive Simpson’s
rule) of the Rayleigh integral in eq. (3). (We ignore overall
e−ikr/r radial term in eq. (3), as our concern here is with
the polar response.) The responses are plotted against the
dimensionless frequency ka. (For reference, an array of ra-
dius a = 1 m has ka = 1 at 54 Hz.)

Fig. 5 illustrates several aspects of the theory devel-
oped above. There is a clear cutoff frequency (ka ≈ 10)
above which the radiation pattern transitions from omni-

0

0.5

1

S
(θ
)

30 60 90
θ [degrees]

Fig. 4: Shading functions with −6 dB beam angles of 25◦

and 47◦, via cosine shading [solid] and Chebyshev shading
[dashed]. The degree-6 Chebyshev polynomial (20) was
used for the narrow beam; a degree-2 polynomial was used
for the wider beam.

directional to a frequency-independent narrow beam pat-
tern. Above cutoff the level rolls off at 3 dB/oct at all off-
axis angles, as predicted by eq. (14). In marked contrast
with a full-circle array (Fig. 2), this shaded circular arc pro-
vides a usable raw response at all frequencies, without nulls
or significant ripples.

For both the wide-beam cosine shading (19) and narrow-
beam Chebyshev shading (20), Fig. 6 shows the far-field
magnitude responses at various angles θ in the plane of
the array, this time normalized to the on-axis (θ = 0) re-
sponse. In agreement with our theory, above the cutoff fre-
quency (ka ≈ 3 for the wide-beam example; ka ≈ 10 for
the narrow-beam case) the normalized response becomes
flat at all angles, indicating a constant radiation pattern.

To illustrate the improvement in Chebyshev over Leg-
endre function shading, Fig. 7 shows the far-field magni-
tude response at various angles in the plane of the array,
for two arrays shaded to achieve a −6 dB beam angle of
25◦: one with Legendre function shading given in [8], the
other with the degree-6 Chebyshev shading of eq. (20).
The Legendre-shaded array exhibits response ripples of
several dB, whereas the Chebyshev-shaded array has a
ripple-free response at all off-axis angles. Moreover, with
increasing frequency the Chebyshev-shaded array settles
more quickly into a frequency-independent radiation pat-
tern, particularly at angles beyond 30◦ off-axis. (In the
wide-beam case the difference between Legendre function
and cosine shading is quite small, so we do not show a
comparison in that case.)

3.2 Full-Sphere Radiation Patterns
For the two shading functions considered above, Fig. 8

shows 3D radiation patterns (polar balloons) calculated at
several frequencies, via numerical quadrature of the inte-
gral in eq. (3), and normalized to the on-axis (θ = φ = 0)
response. For ease of presentation, and to facilitate com-
parison with Keele’s results [8, 9], the array plane (i.e. the
xy-plane) is oriented vertically.

As expected, in both cases there is a transition from
monopole radiation at low frequency to a frequency-
independent radiation pattern above the cutoff frequency.
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Fig. 5: Raw (unequalized) far-field magnitude response at
various angles θ in the plane of an array with the Cheby-
shev shading (20).
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Fig. 6: Far-field magnitude responses at various angles θ in the plane of the array, normalized to the on-axis (θ = 0)
response, for (a) a wide-beam array with the cosine shading of eq. (19), and (b) a narrow-beam array with the Chebyshev
shading of eq. (20).

Above cutoff the full radiation pattern is remarkably con-
stant in both cases, except near the z-axis where the pattern
settles down only at the highest frequencies. In agreement
with eq. (14), the limiting pattern in the plane of the ar-
ray is determined by the shading function, while the out-
of-plane pattern has a broad 1/

√
cosφ shape with corre-

sponding amplitude peaks on the z-axis. As predicted, the
radiation patterns are bi-directional and symmetric front-
to-back (i.e. across the yz-plane).

3.3 Directivity Index
The directivity index [2] characterizes the directivity of

a radiation pattern p(r,θ ,φ) in terms of the ratio of the on-
axis intensity to that of a point source radiating the same
total power. For the coordinate system of Fig. 1 the direc-
tivity index is given by

DI = 10log10
4π|p(r,0,0)|2∫ 2π

0
∫ π/2
−π/2 |p(r,θ ,φ)|2 cosφ dφ dθ

. (21)
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Fig. 7: Far-field magnitude responses at various angles θ

in the plane of the array, normalized to the on-axis (θ = 0)
response, for arrays with−6 dB beam angle of 25◦ via Leg-
endre function shading [solid] and the Chebyshev shad-
ing (20) [dashed]. Angular resolution is 5◦.

Fig. 9 shows the directivity index as a function of dimen-
sionless frequency ka, calculated by numerical quadrature
of (21) with the radiation pattern given by eq. (3), for sev-
eral different choices of array shading. As expected, all
four examples give 0 dB directivity (monopole radiation)
at low frequency, with increasing directivity in a transition
band around the cutoff frequency of the array, above which
the directivity becomes constant and determined by the ar-
ray shading. For the wide-beam arrays in particular the di-
rectivity index is remarkably constant, varying by less then
a few dB over the entire spectrum. Also, Fig. 9 gives fur-
ther confirmation that our Chebyshev polynomial shading
gives a small improvement over Legendre function shad-
ing, with more consistent directivity (less ripple) above the
cutoff frequency.

The limiting constant value of the directivity above cut-
off can be found by substituting eq. (15) into (21), which
gives

DI = 10log10
|S(0)|2∫ π/2

0 |S(θ)|2 dθ

(ka� nmax). (22)

In the case of cosine shading (eq. (17)) this simplifies
to DI = 10log10(2/θ0); when the arc coverage θ0 is de-
creased by half, the directivity index increases 3 dB.

4 Discrete Arrays

Our theory has so far assumed a continuous line source.
An array of discrete source elements (as is likely to be used
in a practical implementation) can only approximate this
condition. As a simple model of the discrete case, here we
consider a circular-arc array of discrete point sources with
amplitude shading determined by sampling a given shading
function. The behavior of such an array can be predicted by
applying the modal theory developed in Sec. 1. Further re-
sults on aliasing and grating-lobe effects in circular arrays
can be found in [13, 15, 31].
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Wide Beam Narrow Beam

ka = 1:

ka = 5:

ka = 10:

ka = 20:

ka = 50:

Fig. 8: 3D radiation patterns (polar balloons) for circular-arc arrays with the wide-beam cosine shading of eq. (19) and
narrow-beam Chebyshev shading of eq. (20). All plots are normalized on-axis. Note that the array orientation differs from
Fig. 1: in the interests of space and comparison with [9], the array plane (the xy-plane) is oriented vertically here.
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Consider an amplitude-shaded circular array of N point
sources spaced uniformly around the circle at angles

α j = j
2π

N
( j = 0, . . . ,N − 1), (23)

with strengths S(α j) determined by sampling the shading
function S(α). (In a circular-arc array most of the sources
will have zero strength and so can be eliminated in prac-
tice). We can represent such an array by the shading func-
tion

Ŝ(α) =
2π

N

N−1

∑
j=0

S(α j)δ (α − α j) (24)

where δ is the Dirac delta distribution. One can show (e.g.
directly via eq. (4) or by convolution properties of the dis-
crete Fourier transform [35]) that Ŝ has cosine series coef-
ficients

ân = an + ∑
k=±1,±2,...

(an+kN + a−n+kN). (25)

Thus the mode amplitudes in the discrete and continu-
ous cases are identical, except that discretization excites
additional higher-order spurious modes (represented by
the sum on the right). Eq. (25) appears in various forms
throughout the literature on circular arrays [13, 27, 28, 31,
36] and discrete sampling of periodic signals more gener-
ally.

Fig. 10 illustrates the Fourier spectrum of a typical con-
tinuous shading S(α) together with that of its discretiza-
tion Ŝ(α). As before, nmax is the index of the highest-order
non-negligible mode of the continuous shading. Provided
that N ≥ 2nmax, it follows from eq. (25) that there will be
no spectral overlap between the spurious modes and those
of the continuous shading (i.e. spatial aliasing), so that the
shading mode amplitudes an and ân will be identical for all
n ≤ N/2 (this is a special case of the well-known Nyquist-
Shannon sampling theorem, applied to sampling in space
rather than time).

Assuming this Nyquist condition is met, the continuous
and discrete arrays will behave indistinguishably for fre-
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Fig. 9: Directivity index as a function of frequency, for
circular-arc arrays with several different shading func-
tions: (a) Legendre function shading from [8] with −6 dB
beam angle of 25◦; (b) the degree-6 Chebyshev polyno-
mial shading of eq. (20); (c) the wide-beam cosine shading
of eq. (19); (d) degree-2 Chebyshev polynomial shading to
achieve the same −6 dB beam width as (c).

quencies ka� N − nmax. At these frequencies the spuri-
ous modes are all strongly attenuated in the far field (recall
that a radiation mode of order n rolls off at 6n dB/oct at low
frequency) so that only the low-order shading modes con-
tribute to the radiation pattern. Since the low-order mode
amplitudes are identical in the continuous and discrete
cases, their radiating behaviors are identical. Only at higher
frequencies ka & N − nmax do the spurious modes begin to
radiate, appearing as grating lobes in the radiation pattern.
Note that ka ≈ N when the element spacing and acoustic
wavelength are approximately equal; thus grating lobes are
avoided if the element spacing is small compared with the
wavelength, as might be anticipated on physical grounds.

As an illustrative example, Fig. 11 plots far-field mag-
nitude responses at various angles in the plane of an array
of N = 50 point sources with the Chebyshev shading of
eq. (20). (Only 15 of the sources are actually active; the
remainder lie in the part of the circle where the shading
function is zero.) The responses were calculated using the
formula

|p(r,θ)| = 1
r

∣∣∣∣∣N−1

∑
j=0

S(α j)eikacos(θ−α j)

∣∣∣∣∣ (26)

which results from substituting the discrete shading of
eq. (24) into eq. (3). Comparison with Fig. 5 shows that,
as expected, for all frequencies up to ka ≈ N = 50 the re-
sponse of the discrete array is indistinguishable from that
of a continuous array with the same shading. At higher fre-
quency the spurious modes due to discretization begin to
radiate, resulting in loss of pattern control. In this example
the constant directivity bandwidth (from cutoff to the ap-
pearance of grating lobes) is about one decade. From the
theory developed above we can see that, in general, the
constant directivity bandwidth will be about N/nmax.

an

n0 nmax

(a)

ân

n0 nmax N 2N
N − nmax N + nmax

(b)

Fig. 10: Mode amplitudes (Fourier cosine series coeffi-
cients) an of (a) a given continuous shading function S(α),
and (b) the sampled discrete shading Ŝ(α) in eq. (24).

J. Audio Eng. Soc., Vol. ?, No. ?, 2019 ? 9



TAYLOR, MANKE AND KEELE PAPERS

5 Conclusion

We have developed a far-field theory that accounts for
the observed [8, 9, 10, 11] constant directivity behavior of
amplitude-shaded circular-arc line arrays. The key to un-
derstanding and optimizing such arrays is to express the
shading function as a Fourier cosine series (expansion in
circular harmonics). This yields a modal theory that can
be used to predict the radiating behavior at all frequen-
cies. The conclusions that follow are remarkably parallel
to those for an amplitude-shaded spherical cap, as devel-
oped in [4, 5]:

r Provided the active part of the array is limited to an
arc of 180◦ or less, the radiation pattern is asymptot-
ically frequency-independent above a cutoff frequency
determined by the arc radius and the highest-order non-
negligible shading mode. The cutoff frequency is in-
versely proportional to the arc radius and prescribed
beam width.r Above cutoff the constant radiation pattern is bi-
directional, and can be represented as a product of
in-plane and out-of-plane patterns. The in-plane pattern
is identical to the given shading function, while the
out-of-plane pattern has a broad 1/

√
cosφ form with a

strong amplitude peak within a small solid angle around
the axis of the circular arc (φ ≈ ±π

2 ).r Above cutoff the magnitude response rolls off at
3 dB/oct, everywhere in the far field.r Directivity control is lost below cutoff: the radiation pat-
tern becomes omni-directional when the array becomes
acoustically small.

These theoretical results are corroborated by Keele’s ear-
lier measurements and simulations [9, 10, 12] as well as
the simulations presented here.

Our theory indicates how to design the amplitude shad-
ing so as to achieve constant directivity over the widest
band possible: the Fourier spectrum of the shading func-
tion must be concentrated in its lowest-order terms. This
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Fig. 11: Raw (unequalized) far-field magnitude responses
in the plane of an array of N = 50 discrete point sources
with uniform angular spacing and the Chebyshev shading
of eq. (20).

explains Keele’s observations that shading with a Legendre
function (borrowed from [4]) behaves very well, but it also
opens the way to designing better shading functions. Here
we have developed two new shading functions adapted to
circular-arc arrays: one based on a simple cosine form, the
other based on Chebyshev polynomials. Cosine shading
has the advantage of being quite simple, and allows for the
widest beam pattern. Chebyshev polynomial shading gives
a better-controlled frequency response, at the expense of
requiring greater arc coverage for a given beam width.

Our main results are based on a theory for a continu-
ous circular-arc line source. However, such a source can
be well-approximated by a discrete array of point sources
with uniform angular spacing and amplitude shading deter-
mined by sampling the shading function. This discretiza-
tion introduces high-order spatial modes, but our theory
predicts that these are strongly attenuated in the far field
except at high frequencies. When the frequency increases
to where the element spacing is on the order of the acous-
tic wavelength, the high-order modes begin to radiate and
appear as grating lobes in the radiation pattern, resulting in
loss of directivity control.

As for other array geometries, directivity control by a
circular-arc array is limited to the frequency band in which
the wavelength is both smaller than the array size (arc
length) and larger than the element spacing. Unlike other
array geometries, however, a circular-arc array radiates a
pattern that is remarkably constant throughout this band: a
linear array, for example, has a beam pattern that inherently
narrows with increasing frequency. Moreover, unlike the
baffled circular arrays considered in [23, 24, 25, 26, 27, 28]
an unbaffled circular arc facilitates construction of long
arrays, especially in a ground-plane deployment [11, 12]
which doubles the effective array length, extending the
constant-directivity bandwidth by one octave: a 2 m tall
ground-plane arc array is effectively 4 m long and thereby
exhibits directivity control starting below 100 Hz.

Practical implementation of our theory is beyond the
scope of the present paper. Several engineering issues
arise, including departure of source elements from ideal
point-source behavior, mutual coupling between source el-
ements, source mismatch in both amplitude and phase,
electronic implementation of the shading function, and
equalization of the inherent−3 dB response. Some of these
issues and more have been addressed in the literature pre-
viously [10, 11, 12, 31], including some results indicat-
ing that our theory can be extended to include directional
elements [14, 15]. However, a number of open questions
remain to be investigated.

A major benefit of CBT spherical-cap arrays, shown the-
oretically in [4], is that both the near- and far-field radiation
pattern agree with the shading function, and thus there is
no essential difference between the near- and far-field be-
haviors. Unfortunately the (far-field) theory presented here
does not account for this important aspect of circular-arc
line arrays; we plan to address this issue in future work.
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A.1 Half-Circle Restriction

Theorem 1. Let (an)
∞
n=0 be the sequence of Fourier

cosine series coefficients of the function S(θ) =
∑

∞
n=0 an cosnθ and let

Se(θ) = ∑
n even

an cosnθ , So(θ) = ∑
n odd

an cosnθ .

Let θ be given. Then |So(θ)| = |Se(θ)| if and only if at
most one of S(θ) and S(π − θ) is non-zero.

Proof

For any θ we have

So(π − θ) = ∑
n odd

an cosn(π − θ)

= ∑
n odd

an(−1)n cosnθ = −So(θ) (A.1)

and similarly

Se(π − θ) = ∑
n even

an(−1)n cosnθ = Se(θ). (A.2)

Thus we have{
S(θ) = Se(θ) + So(θ)

S(π − θ) = Se(θ)− So(θ)

which implies{
2Se(θ) = S(θ) + S(π − θ)

2So(θ) = S(θ)− S(π − θ).
(A.3)

It follows that

|Se(θ)| = |So(θ)|
⇐⇒ |S(θ) + S(π − θ)| = |S(θ)− S(π − θ)|
⇐⇒ S(θ) + S(π − θ) = ±

(
S(θ)− S(π − θ)

)
⇐⇒ S(θ) = 0 or S(π − θ) = 0.

This completes the proof.

Eqs. (A.1)–(A.2) show that in general the functions
So(θ), Se(θ) have odd and even symmetry, respectively,
about θ = ±π

2 . In the body of the paper (cf. eq. (14)) this
implies that the limiting radiation pattern above cutoff is
bi-directional and symmetric across the yz-plane. If S(θ) is
non-zero only for −π

2 < θ < π

2 then eq. (A.3) gives

|Se(θ)| =
{

1
2 |S(θ)| if − π

2 < θ < π

2
1
2 |S(π − θ)| if π

2 < θ < 3π

2 .
(A.4)

A.2 Cosine Shading
To derive an optimal shading for circular-arc arrays, here

we adapt the technique that was used in [4] to derive Leg-
endre function shading for a spherical cap. We seek an even
shading function

S(θ) =

{
f (θ) |θ | ≤ θ0

0 θ0 < |θ | ≤ π
(A.5)

where the arc half-angle θ0 ≤ π

2 is given and f is a function
to be determined. The cosine series coefficients of S are
then

an =
2
π

∫
θ0

0
f (θ)cos(nθ)dθ (n > 0). (A.6)

To concentrate this Fourier spectrum in its lowest-order
terms, our strategy is to determine f so that a2

n is mini-
mized (as a function of θ0) for all n > N, while the a2

n are
maximized for n ≤ N.

Making all the an stationary with respect to θ0 requires
that

0 =
dan

dθ0
=

2
π

f (θ0)cos(nθ0). (A.7)

Satisfying this equation for all n requires f (θ0) = 0, i.e.
f should have a root at the arc endpoint θ0. We take this
to be the smallest such root, since the beam pattern would
otherwise have undesirable side-lobes. We can then assume
without loss of generality that f (θ) > 0 for 0 < θ < θ0.
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To distinguish whether the a2
n are maximized or mini-

mized as a function of θ0 we employ the second derivative
test; to this end we evaluate

d2a2
n

dθ 2
0

=
4
π

an f ′(θ0)cos(nθ0). (A.8)

Let N be the integer such that for all n ≤ N the smallest
root of cos(nθ) is greater than θ0, while for n > N the
smallest root is less than θ0. Thus,

N = bπ/(2θ0)c (A.9)

where b·c denotes the integer part. Then for n ≤ N we have
cos(nθ) > 0 on [0,θ0], hence an > 0 by eq. (A.6). Assum-
ing f ′(θ0) < 0 gives d2a2

n/dθ 2
0 < 0, so that each of the a2

n
(n ≤ N) is indeed a local maximum as a function of θ0.

Now we need to ensure that a2
n is a local minimum

as a function of θ0 for all n > N, which would require
d2a2

n/dθ 2
0 > 0. Thus, from eq. (A.8) we require

cos(nθ0)
∫

θ0

0
f (θ)cos(nθ)dθ < 0 (n > N). (A.10)

This gives the shading function

f (θ) = cos
(

π

2 · θ

θ0

)
. (A.11)

as one possible choice that satisfies (A.10) together with
our various other assumptions. Indeed, we have

cos(nθ0)
∫

θ0

0
f (θ)cos(nθ)dθ

=

(
π

2θ0

)2(
π

2θ0

)2 − n2
· cos2(nθ0) < 0 (A.12)

when n > N = bπ/(2θ0)c so that (A.10) is satisfied and
a2

n is indeed a local minimum, as a function of θ0, for all
n > N. Thus the cosine function (A.11) is (in one particular
sense) an optimal choice of shading function.

A.3 Chebyshev Polynomial Shading
Here we take a different (in some ways better) approach

to optimally shading a circular-arc array to achieve broad-
band constant directivity. Again we seek a shading function
S(θ) of the form (A.5) but employ the following strategy
to obtain such a function whose cosine series is concen-
trated in its lowest-order terms. Let f (θ) be a low-order
polynomial in cosθ , chosen so that f (θ) vanishes as nearly
as possible for θ0 ≤ |θ | ≤ π . When set f (θ) to 0 on this
interval to form S(θ) as in (A.5), this introduces higher-
order spectral terms but these have small magnitude (since
the change in f is small). Thus the Fourier spectrum of S
remains concentrated in its lowest orders.

To this end, let S(θ) be given by (A.5) where

f (θ) = P(cosθ) (A.13)

and P is a degree-N polynomial to be determined. With
z = cosθ we want the maximum of |P(z)| on the inter-
val [−1,cosθ0] to be as small as possible (so that P(cosθ)
is minimized for θ0 ≤ |θ | ≤ π). It is a well-known result
in approximation theory that this criterion uniquely deter-
mines P and that (as elaborated in the following) P can be

expressed in terms of a Chebyshev polynomial [37, ch. 4].
Alas, the reasons for this are not readily summarized; the
interested reader is referred to e.g. [37, 38] or any standard
reference on approximation theory or numerical analysis.

The first few Chebyshev polynomials TN(u) are given,
up to a multiplicative constant, by

T1(u) = u, T3(u) = 4u3 − 3u,

T2(u) = 2u2 − 1, T4(u) = 8u4 − 8u2 + 1.
(A.14)

Each TN is the (unique) monic polynomial of degree N
whose maximum absolute value on [−1,1] is a mini-
mum [37, p. 36]. Moreover [38], among all degree-N poly-
nomials TN has largest values outside the interval [−1,1].

To obtain the polynomial P(cosθ) that vanishes as
nearly as possible for all θ0 ≤ |θ | ≤ π , following [37,
Cor. 4.1.1] we let z = cosθ and form P(cosθ) = TN(u(z))
where

u(z) = 2 · 1 + z
1 + cosθ0

− 1

is the linear map that takes z ∈ [−1,cosθ0] to u ∈ [−1,1].
This gives the shading function (A.5) in which

f (θ) = TN

(
2 · 1 + cosθ

1 + cosθ0
− 1
)
. (A.15)

Being “close” to a degree-N polynomial in cosθ , this shad-
ing function has its cosine series concentrated in its lowest-
order terms.
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