MATH 365 — Midterm Exam #1 13 October 2006

| Problem 1: Determine the decimal representation of the binary number (11011.01),.
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Problem 2: A binary machine that carries 30 bits in the mantissa (i.e. fractional part) of each
/3 floating-point number is designed to round a given real number up or down correctly to get the nearest
representable floating-point number. What simple upper bound can be given for the relative error in
this rounding process?
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/3 Problem 3: What is the order of convergence (in “big-O” notation) of the sequence z,, = 1—cos(1/n?),
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Problem 4: Consider the function f(z) = z —sinz.

(a) Evaluate f(0.2) using 3-digit (decimal) rounding arithmetic.

-3
&2 - 0.199 = 0.00( = |1.00x% (O

(b) What are the relative error and number of significant figures in your result from part (a)? What
causes the large relative error in this calculation?
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(c) One way to compute f(0.2) while retaining ‘more significant figures is to use a Taylor polynomial.

Find the 5th-order Taylor polynomial Ps(z) for f(z) based at g = 0, and evaluate P5(0.2) using 3-digit
rounding arithmetic.
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(d) What are the relative error and number of significant figures in using your result from part (c) to
approximate f(0.2)7?
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| Problem 5: Consider the problem of finding the z-coordinate of the intersection point of the graphs
of y =3z and y = €*.

(a) The Intermediate Value Theorem guarantees the existence of a solution in the interval [1,2]. Starting
with this interval, what is the minimum number of iterations of the bisection method needed to obtain
a solution correct to 6 decimal digits?
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(b) Find the solution correct to 6 decimal digits using Newton’s method.
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Problem 6: We saw in class that using Newton’s method to approximate v/2 yields the fixed-point
iteration scheme zn41 = g(zn) with g(z) = £ + 1.

(a) Prove that for any zg € [1,2] the sequence {r,} converges.
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(b) Fm h(én upper bound on |¢'(z)| and use this to estimate the number of iterations needed to evaluate
V2 correct to 100 decimal digits.
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Problem 7: It is easily verified that one root of the polynomial P(z) = z* + 5z3 — 922 — 85z — 136

is £ ~ 4.1231. Use deflation (by synthetic division) to find a polynomial Q(z) of degree 3 whose roots
are the other 3 roots of P.
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Problem 8: Show that for any real number k > 1 the sequence z, = f,-.- converges linearly to 0 as
n — 00.
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/3 Problem 9: Construct a sequence that converges to 0 with order of convergence 3.
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