Problem 1: Determine the decimal representation of the binary number $(11011.01)_2$.

$$2^{4} + 2^{3} + 2^{1} + 2^{0} + 2^{0} = 27.25$$

Problem 2: A binary machine that carries 30 bits in the mantissa (i.e. fractional part) of each floating-point number is designed to round a given real number up or down correctly to get the nearest representable floating-point number. What simple upper bound can be given for the relative error in this rounding process?

• in the worst case,
$$x = 0.b_1b_2...b_{2q}0100... \times 2^n$$
 so that $f(x) = 0.b_1b_2...b_{2q}1 \times 2^n$
• then $\frac{|x - f(x)|}{|x|} = \frac{-31}{2}$
thus rel. err. $\leq 2^{-31} \approx 4.7 \times 10^{-10}$

Problem 3: What is the order of convergence (in "big-O" notation) of the sequence $x_n = 1 - \cos(1/n^3)$, as $n \to \infty$?

•
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$$

50 $1 - \cos(x) = \frac{x^2}{2!} - \frac{x^4}{4!} + \cdots$ $= \frac{\sqrt{6}}{2!} - \frac{\sqrt{12}}{2!} + \cdots$
• $1 - \cos(\frac{1}{\sqrt{3}}) = \frac{(1/\sqrt{3})^2}{2!} - \frac{(1/\sqrt{3})^4}{4!} + \cdots = \frac{\sqrt{6}}{2!} - \frac{\sqrt{12}}{4!} + \cdots$
 $= 0(\sqrt{6})$

Problem 4: Consider the function $f(x) = x - \sin x$. (a) Evaluate f(0.2) using 3-digit (decimal) rounding arithmetic.

$$32 - 0.199 = 0.001 = 1.00 \times 10^{-3}$$

(b) What are the relative error and number of significant figures in your result from part (a)? What causes the large relative error in this calculation?

•
$$f(0.2) = 1.33067 \times 10^{-3}$$

so rel. err. is $\frac{1.33067 - 1.00}{1.33067} \approx 0.25$

• large error due to subtracting searly-equal numbers (c) One way to compute f(0.2) while retaining more significant figures is to use a Taylor polynomial. Find the 5th-order Taylor polynomial $P_5(x)$ for f(x) based at $x_0 = 0$, and evaluate $P_5(0.2)$ using 3-digit rounding arithmetic.

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \quad \text{so} \quad x - \sin x = \frac{x^3}{3!} - \frac{x^5}{5!} + \dots$$

$$\therefore P_5(x) = \frac{x^3}{6} - \frac{x^5}{120!}$$

$$P_5(0.2) = 1.33 \times 10^3 - 2.67 \times 10^6 = 1.33 \times 10^3$$

(d) What are the relative error and number of significant figures in using your result from part (c) to approximate f(0.2)?

rel. err. is
$$\frac{1.33067 - 1.33}{1.33067} \approx 0.000503$$

Problem 5: Consider the problem of finding the x-coordinate of the intersection point of the graphs of y = 3x and $y = e^x$.

- (a) The Intermediate Value Theorem guarantees the existence of a solution in the interval [1, 2]. Starting with this interval, what is the minimum number of iterations of the bisection method needed to obtain a solution correct to 6 decimal digits?
- need to solve $e^{x}-3x=0$ f(x).
- · bisection guarantees $|P_n x| \le \frac{b-a}{2^n}$
- So require $\frac{2-1}{2^n} < 10^6$

$$2^{n} = 2 \times 10^{6}$$
 gives $n = \log_{2}(2 \times 10^{6}) = 20.93$

- (b) Find the solution correct to 6 decimal digits using Newton's method.
 - · Newton's method gives fixed-pt. iteration $x_{n+1} = g(x_n)$ with $g(x) = x - \frac{f(x)}{f'(x)} = x - \frac{e^x - 3x}{e^x - 3}$
 - · start with Xo=1.5...

0	1.5	
1	1.5123581	1.2×103
2	1.5121346	2.2×10
3	1.5121346	7.4×10

Problem 6: We saw in class that using Newton's method to approximate $\sqrt{2}$ yields the fixed-point iteration scheme $x_{n+1} = g(x_n)$ with $g(x) = \frac{x}{2} + \frac{1}{x}$.

(a) Prove that for any $x_0 \in [1,2]$ the sequence $\{x_n\}$ converges.

•
$$g'(x) = \frac{1}{2} - \frac{1}{x^2}$$
 which is monotonically decreasing on [1,2]
(no critical points)
$$g'(2) = \frac{1}{4}$$

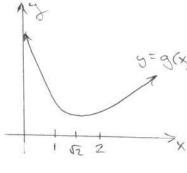
$$g'(1) = -\frac{1}{2}$$

• min
$$g(x) = g(\sqrt{2}) = \sqrt{2} > 1$$

 $x \in [0,1]$

$$\max_{x \in [0,1]} g(x) = g(1) = g(2) = 1.5 < 2$$

· so q([1,2]) = [1,2].



• ... By Fixed-Point Tun, $\{x_n\}$ converges to unique fixed pt. (b) Find an upper bound on |g'(x)| and use this to estimate the number of iterations needed to evaluate $\sqrt{2}$ correct to 100 decimal digits.

we have
$$|x_{x}-x| \le \frac{k^{n}}{1-k} |x_{1}-x_{0}|$$
 with $k=\frac{1}{2}$

so require $\frac{\binom{1}{2}^{n}}{1-\frac{1}{2}} < 10^{-100}$
 $\Rightarrow \binom{1}{2}^{n} < \frac{1}{2} \times 10^{-100}$

sating $\binom{1}{2}^{n} = \frac{1}{2} \times 10^{-100}$ gives $n = 333.2$

so need n ≥ 334

Problem 7: It is easily verified that one root of the polynomial $P(x) = x^4 + 5x^3 - 9x^2 - 85x - 136$ is $x \approx 4.1231$. Use deflation (by synthetic division) to find a polynomial Q(x) of degree 3 whose roots are the other 3 roots of P.

synthetic division: 4,1231 | 1 5 -9 -85 -136 4,1231 37.6155 117.9844 135.997 1 9,1231 28.6155-32.9844 2×10^3 ≈ 0 since 4.1231 is a roof (i.e. P(4.1231) = 0 $Q(x) = \frac{P(x)}{x - 4.1231}$ $= \frac{3}{x^3} + 9.1231x^2 + 28.6155x + 32.9844$

Problem 8: Show that for any real number k > 1 the sequence $x_n = \frac{1}{k^n}$ converges linearly to 0 as $n \to \infty$.

$$\frac{1\times_{n+1}1}{1\times_{n}1} = \frac{1}{k^{-n}} = \frac{1}{k^{n+1}} = \frac{1}{k} \Rightarrow \frac{1}{k} \Rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0$$

/3

Problem 9: Construct a sequence that converges to 0 with order of convergence 3.

- require $\frac{|X_{n+1}|}{|X_n|^3} \to \lambda$ as $n \to \infty$, for some λ .
- for simplicity take $\lambda=1$ and all $X_n>0$, then for large n, $X_{n+1}\approx X_n^3$

So
$$X_1 = X_0^3$$

 $X_2 = X_1^3 = (X_0)^3 = X_0^9$
 $X_3 = X_2^3 = (X_0^9)^3 = X_0^{27}$... inductively $X_n = X_0^3$

· to get convergence need 0 < X < 1 so take e.g. X = 1/1:

$$\rightarrow \left[\times_{\sim} = 10^{-3} \right]$$