MATH 2200 – Problem Set #3 Solutions
8 Mar. 2017

Question 5

Classify each set as open, closed, both, or neither.

(a) \(S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \) is neither open nor closed:

\(S \) is not open because \(\text{int} \, S = \emptyset \neq S \). (For every \(x = \frac{1}{n} \in S \), every neighborhood \(N(\frac{1}{n}, \varepsilon) \) contains irrational numbers (i.e. numbers not in \(S \)) so \(x \) is not an interior point. Thus \(\text{int} \, S = \emptyset \).)

\(S \) is not closed because 0 is a boundary point, but 0 \(\notin \) \(S \), so \(\text{bd} \, S \notin S \).

(b) \(\mathbb{N} \) is closed but not open:

At each \(n \in \mathbb{N} \), every neighbourhood \(N(n, \varepsilon) \) intersects both \(\mathbb{N} \) and \(\mathbb{N}^C \), so \(\mathbb{N} \subseteq \text{bd} \, \mathbb{N} \), so \(\mathbb{N} \) is closed.

\(\mathbb{N} \) is not open because \(\text{int} \, \mathbb{N} = \emptyset \neq \mathbb{N} \). (For every \(n \in \mathbb{N} \), every neighborhood \(N(n, \varepsilon) \) contains non-integer reals (i.e. numbers not in \(\mathbb{N} \)) so \(n \) is not an interior point. Thus \(\text{int} \, \mathbb{N} = \emptyset \).)

(c) \(\mathbb{Q} \) is neither open nor closed:

\(\mathbb{Q} \) is not closed because \(\text{bd} \, \mathbb{Q} = \mathbb{R} \neq \mathbb{Q} \). (For each \(x \in \mathbb{R} \), every neighborhood \(N(x, \varepsilon) \) contains both rationals and irrationals, so \(x \) is a boundary point. Thus \(\text{bd} \, \mathbb{Q} = \mathbb{R} \).)

\(\mathbb{Q} \) is not open because \(\text{int} \, \mathbb{Q} = \emptyset \neq \mathbb{Q} \). (For every \(q \in \mathbb{S} \), every neighborhood \(N(q, \varepsilon) \) contains irrational numbers (i.e. numbers not in \(\mathbb{Q} \)) so \(q \) is not an interior point. Thus \(\text{int} \, \mathbb{Q} = \emptyset \).)

(d) \(S = \bigcap_{n \in \mathbb{N}} \left(0, \frac{1}{n} \right) \)

We have

\[S = \bigcap_{n \in \mathbb{N}} \left(0, \frac{1}{n} \right) = (0, 1) \cap (0, \frac{1}{2}) \cap (0, \frac{1}{3}) \cap \cdots = \emptyset \]

so \(S \) is both open and closed (see Practice 3.4.9 in text).

(To see this, consider an arbitrary \(x \in \mathbb{R} \). If \(x \leq 0 \) then clearly \(x \notin S \) since \(x \notin (0, 1) \). On the other hand, if \(x > 0 \) then \(\exists n \in \mathbb{N} \) such that \(\frac{1}{n} < x \) (by the Archimedean property) so \(x \notin \left(0, \frac{1}{n} \right) \) and again \(x \notin S \). Thus \(S = \emptyset \).)

(e) \(S = \left\{ x : |x - 5| \leq \frac{1}{2} \right\} \)

\(S \) is closed but not open:

\(S \) is closed because

\[S = \left\{ x : |x - 5| \leq \frac{1}{2} \right\} = [4.5, 5.5] \text{ bd } S = \{4.5, 5.5\} \implies \text{bd} \, S \subseteq S. \]
(f) $S = \{x : x^2 > 0\}$

S is open but not closed:

We have $S = \mathbb{R} \setminus \{0\}$. S is open because $\text{bd} S = \{0\} \in S^C$.

S is not closed because $\text{bd} S = \{0\} \not\subseteq S$.

Question 7

Let $S, T \subseteq \mathbb{R}$. Find a counter-example for each of the following:

(a) If P is the set of all isolated points of S, then P is a closed set.

Consider $S = \{\frac{1}{n} : n \in \mathbb{N}\}$. Every $x = \frac{1}{n} \in S$ is an isolated point since for sufficiently small ε (e.g. $\varepsilon < 1/(2n)$) we have $N^*(x, \varepsilon) \cap S = \emptyset$, so x is not an accumulation point. Therefore $P = S$.

From 5(a) we have that S is not closed, so P is not closed.

(b) Every open set contains at least two points.

Consider $S = \emptyset$ which is open (see Practice 3.4.9 in text) but contains no points.

(c) If S is closed, then $\text{cl}(\text{int} S) = S$.

Consider $S = \mathbb{N}$ which is closed (see 5(b)). Every point of S is a boundary point, so $\text{int} S = \emptyset$. Thus

$$\text{cl}(\text{int} S) = \text{cl}(\emptyset) = \emptyset \neq S.$$

(d) If S is open, then $\text{int}(\text{cl} S) = S$.

Consider $S = \mathbb{R} \setminus \{0\}$ which is open (since $\text{bd} S = \{0\} \subseteq S^C$). Because $\{0\}$ is an accumulation point of S we have $\text{cl} S = \mathbb{R}$, so that

$$\text{int}(\text{cl} S) = \text{int}(\mathbb{R}) = \mathbb{R} \neq S.$$

(e) $\text{bd}(\text{cl} S) = \text{bd} S$.

Let $S = \mathbb{Q}$. Then

$$\text{bd} S = \mathbb{R} \quad \text{cl} S = \mathbb{R}$$

so we have

$$\text{bd}(\text{cl} S) = \text{bd}(\mathbb{R}) = \emptyset \neq \mathbb{R} = \text{bd} S.$$

2
(f) \(\text{bd}(\text{bd} S) = \text{bd} S \).

Let \(S = \mathbb{Q} \). Then
\[
\text{bd} S = \mathbb{R}
\]
so we have
\[
\text{bd}(\text{bd} S) = \text{bd}(\mathbb{R}) = \emptyset \neq \mathbb{R} = \text{bd} S.
\]

(g) \(\text{bd}(S \cup T) = \text{bd}(S) \cup \text{bd}(T) \).

Consider
\[
S = (0, 2), \quad T = (1, 3).
\]
Then
\[
\text{bd}(S \cup T) = \text{bd}(0, 3) = \{0, 3\} \neq \text{bd} S \cup \text{bd} T = \{0, 2\} \cup \{1, 3\} = \{0, 1, 2, 3\}
\]

(h) \(\text{bd}(S \cap T) = \text{bd} S \cap \text{bd} T \).

Let \(S = (0, 2), \ T = (1, 3) \). Then
\[
\text{bd}(S \cap T) = \text{bd}(1, 2) = \{1, 2\} \neq \text{bd} S \cap \text{bd} T = \{0, 2\} \cap \{1, 3\} = \emptyset
\]

Question 11

Show that if \(A \) is open and \(B \) is closed, that \(A \setminus B \) is open and \(B \setminus A \) is closed.

Proof. Suppose \(A \) is open and \(B \) is closed.

We have that \(B^C \) is open (Thm. 3.4.7a). Therefore
\[
A \setminus B = A \cap B^C
\]
is open, since it is the intersection of a finite collection of open sets (Thm. 3.4.10b).

Furthermore, we have that \(A^C \) is closed (Thm. 3.4.7b). Therefore
\[
B \setminus C = B \cap C^C
\]
is closed, since it is the intersection of closed sets (Cor. 3.4.11a).