MATH 114: Quiz \#7 - SOLUTIONS

$/ 5$
Problem 1: Find the point(s) on the ellipse $4 x^{2}+y^{2}=4$ that are farthest from the point $(1,0)$.

We can maximize the distance-squared to the point (x, y) :

$$
L^{2}=(x-1)^{2}+y^{2}
$$

With the constraint that (x, y) must lie on the ellipse we get

$$
y^{2}=4-4 x^{2} \Longrightarrow L^{2}=(x-1)^{2}+\left(4-4 x^{2}\right) \equiv f(x)
$$

We need to maximize $f(x)$ on the closed interval $[-1,1]$, so first find critical point(s) of f :

$$
\begin{gathered}
f^{\prime}(x)=2(x-1)-8 x=-6 x-2 \\
f^{\prime}(x)=0 \Longrightarrow-6 x-2=0 \Longrightarrow x=-1 / 3
\end{gathered}
$$

then evaluate and compare:

$$
\begin{aligned}
& f\left(-\frac{1}{3}\right)=\left(-\frac{1}{3}-1\right)^{2}+\left(4-4\left(\frac{1}{3}\right)^{2}\right)=\frac{16}{3}=5 \frac{1}{3} \\
& f(-1)=4 \\
& f(1)=0
\end{aligned}
$$

So the points farthest from $(1,0)$ are

$$
\left(-\frac{1}{3}, \pm \frac{4 \sqrt{2}}{3}\right)
$$

/3 Problem 2: Use Newton's method to find $\sqrt[3]{30}$ correct to 4 decimal places.

We can find $\sqrt[3]{30}$ by solving the equation

$$
0=x^{3}-30 \equiv f(x)
$$

We have

$$
f^{\prime}(x)=3 x^{2}
$$

so Newton's method gives

$$
x_{n+1}=x_{n}-\frac{x_{n}^{3}-30}{3 x_{n}^{2}}
$$

With $x_{0}=3\left(\right.$ since $\left.3^{3}=27 \approx 30\right)$ we get:

$$
\begin{aligned}
& x_{1}=3-\frac{3^{3}-30}{3 \cdot 3^{2}} \approx 3.11111 \\
& x_{2}=x_{1}-\frac{x_{1}^{3}-30}{3 x_{1}^{2}} \approx 3.10724 \\
& x_{2}=x_{2}-\frac{x_{2}^{3}-30}{3 x_{2}^{2}} \approx 3.10723
\end{aligned}
$$

so to 4 decimal places we have

$$
\sqrt[3]{30} \approx 3.1072
$$

