MATH 114: Quiz \#6 - SOLUTIONS

/4 Problem 1: Gravel is being dumped from a conveyor belt at a rate of $3 \mathrm{~m}^{3} / \mathrm{min}$ onto a pile whose diameter and height remain equal as the pile grows. How fast is the height of the pile increasing when the pile is 2 m high?

For a cone with equal diameter and height $(D=2 r=h)$ we have

$$
\begin{aligned}
V & =\frac{\pi}{3} r^{2} h=\frac{\pi}{3}\left(\frac{h}{2}\right)^{2} h=\frac{\pi}{12} h^{3} \\
& \Longrightarrow V^{\prime}=\frac{\pi}{12} \cdot 3 h^{2} \cdot h^{\prime} \\
& \Longrightarrow 3=\frac{\pi}{12} \cdot 3(2)^{2} h^{\prime} \\
& \Longrightarrow h^{\prime}=\frac{3}{\pi} \approx 0.95 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

/4 Problem 2: A certain right-angled triangle has a height known to be exactly 20 cm . The length of the base is measured to be 30 cm with a possible error of $\pm 0.5 \mathrm{~cm}$. Calculate the length of the hypotenuse, and use differentials to estimate the possible error.

Pythagoras:

$$
L^{2}=x^{2}+y^{2} \Longrightarrow L=\sqrt{x^{2}+y^{2}}=\sqrt{20^{2}+30^{2}} \approx 36.1 \mathrm{~cm}
$$

Error analysis:

$$
2 L \frac{d L}{d x}=2 x \Longrightarrow \Delta L \approx \frac{x}{L} \Delta x=\frac{30}{36.1}(0.5) \approx 0.42 \mathrm{~cm}
$$

So

$$
L=36.1 \pm 0.4 \mathrm{~cm}
$$

