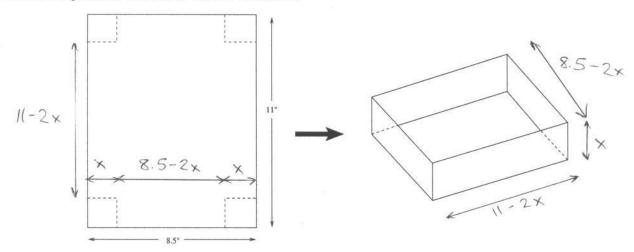
Problem 1: Squares are cut out of the corners of a standard 8.5" × 11" sheet of paper. The sides are then folded up to form a container (a box with no top) as shown in the diagram below. What is the maximum possible volume of such a container?



maximize:
$$V(x) = (11-2x)(8.5-2x)x$$
 for $x \in [0,4.25]$
= $93.5x - 39x^2 + 4x^3$

critical pts:

$$V'(x) = 93.5 - 78x + 12x^2 = 0$$

$$\rightarrow x = 78 \pm \sqrt{78^2 - 4(12)(93.5)} = 4.91 \text{ or } 1.59$$

$$2(12)$$
outside $(0, 4.25)$
So reject

compare:

$$V(1.59) = 7.83'' \times 5.33'' \times 1.59'' = 66.1 \text{ in}^3$$

/3 Problem 2: A rock is dropped into a lake and an expanding circular ripple results. When the radius of the ripple is 8 m, the radius is increasing at a rate of 0.5 m/s. At what rate is the area enclosed by the ripple changing at this time?

$$A = \pi r^{2}$$

$$\Rightarrow A' = 2\pi r r'$$

$$= 2\pi (8)(0.5)$$

$$= 8\pi \approx 25.1 \text{ m}^{2}(s)$$

Problem 3: The period of a pendulum is given by the formula $T = 2\pi\sqrt{L/g}$ where L is the length of the pendulum in meters, $g = 9.81 \,\mathrm{m/s^2}$ is the acceleration due to gravity, and T is the pendulum's period in seconds. If the length of the pendulum is measured with an accuracy of 5%, what is the uncertainty (in %) in the calculated period?

$$T = \frac{2\pi}{\sqrt{g}} L^{1/2} \rightarrow dT = \frac{2\pi}{\sqrt{g}} \frac{1}{2} L^{-1/2} dL$$

$$50 \frac{dT}{T} = \frac{\frac{2\pi}{\sqrt{9}} \frac{1}{2} \frac{1}{2} \frac{1}{2} dL}{\frac{2\pi}{\sqrt{9}} \frac{1}{2} \frac{1}{2} \frac{1}{2} dL} = \frac{1}{2} \frac{dL}{L}$$

$$\frac{dT}{T} \approx \frac{1}{2}(0.05) = 0.025 = 2.5\%$$

/9

Problem 4: Consider the function $f(x) = x^2 e^{-x}$.

(a) Determine the intervals of increase and decrease for this function.

$$f'(x) = 2xe^{x} - x^{2}e^{x}$$

$$= x(2-x)e^{x}$$

$$(-\infty,0) - decr.$$

$$f'=0 \Rightarrow x=0 \text{ or } 2$$

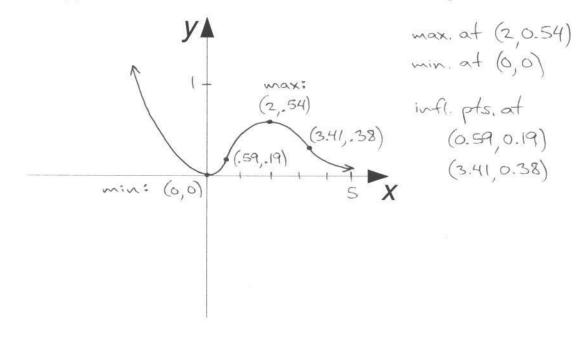
$$(2,\infty) - decr.$$

(b) Determine the intervals of concavity.

$$f''(x) = 2e^{x} - 2xe^{x} - 2xe^{x} + x^{2}e^{x}$$

 $= (x^{2} - 4x + 2)e^{x}$ interval f'' f
 $f'=0 \Rightarrow x = \frac{4 \pm \sqrt{4^{2} - 8}}{2}$ $(-\infty, 2 - \sqrt{2})$ + concave up
 $= 2 \pm \sqrt{2}$ $(2 + \sqrt{2}, \infty)$ + concave up

(c) Sketch a graph of y = f(x). Label all maximum and minimum values and inflection points.



/5

Problem 5: Consider the graph defined by the equation

$$x \tan^{-1} y = x^2 + y.$$

Find the slope of the tangent line to the graph at the point (0,0).

implicit differentiation:

(1) faily +
$$\times \frac{1}{1+y^2} \cdot y' = 2x + y'$$

Substitute $x=0, y=0$:

 $fail(0) + 0 \cdot \frac{1}{1+0^2} \cdot y' = 0 + y'$

$$y' = 0$$

/4

Problem 6: Use a linear approximation or differentials to estimate $\sqrt[4]{83}$. (Note that $\sqrt[4]{81} = 3$.)

• let
$$y(x) = \sqrt[4]{x} = x^{1/4}$$

so $dy = \frac{1}{4} x^{-3/4} dx$.

• at
$$x = 81$$
, $dx = 2$ so:

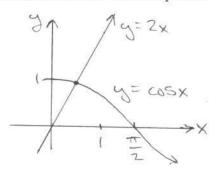
$$y(81) = 81^{14} = 3$$

$$dy = \frac{1}{4}(81)^{34}(2) = \frac{1}{4} \cdot \frac{1}{27} \cdot 2 = \frac{1}{54} \approx 0.0185$$

14

Problem 7: Use Newton's method to find a solution of $\cos x = 2x$ accurate to 3 decimal places.

cos x - 2x = 0 f(x)



· Newton's method:

$$X_{n+1} = X_n - \frac{f(x_n)}{f'(x_n)} = X_n + \frac{\cos X_n - 2X_n}{\sin X_n + 2}$$

• guess $X_0 = 0.6$ (from graph) $\rightarrow X_1 = 0.6 + \frac{\cos(0.6) - 2(0.6)}{\sin(0.6) + 2} = 0.4539$ $\rightarrow X_2 = 0.4502$

$$\rightarrow x_3 = 0.4502$$

∴ ×≈ 0.450