THOMPSON RIVERS UNIVERSITY

MATH 114
Calculus I

Instructor: Richard Taylor

MIDTERM EXAM \#1 SOLUTIONS

12 February 2010 12:30-13:20

Instructions:

1. Read all instructions carefully.
2. Read the whole exam before beginning.
3. Make sure you have all 5 pages.
4. Organization and neatness count.
5. You must clearly show your work to receive full credit.
6. You may use the backs of pages for calculations.
7. You may use an approved calculator.

PROBLEM	GRADE	OUT OF
1		8
2		4
3		5
4		13
5		5
6		3
TOTAL:		38

Problem 1: Evaluate the following limits.
(a) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2} \\
& =\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x}+2)} \\
& =\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2} \\
& =\frac{1}{\sqrt{4}+2}=\frac{1}{4}
\end{aligned}
$$

(b) $\lim _{x \rightarrow 1^{-}} \frac{x}{\sqrt{1-x^{2}}}$

$$
=\frac{1}{0^{+}}=+\infty
$$

(c) $\lim _{x \rightarrow \infty} \frac{3 x^{3}-5 x^{2}+7}{8+2 x-5 x^{3}}$

$$
=\lim _{x \rightarrow \infty} \frac{3-\frac{5}{x}+\frac{7}{x^{3}}}{\frac{8}{x^{2}}+\frac{2}{x^{2}}-5}=\frac{3-0+0}{0+0-5}=-\frac{3}{5}
$$

Problem 2: Consider the function

$$
g(x)= \begin{cases}x^{2}+4, & x<2 \\ C, & x=2 \\ x^{3}, & x>2\end{cases}
$$

For what values) of C is $g(x)$ continuous everywhere. Justify your answer.
We have

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} g(x)=2^{2}+4=8 \\
& \lim _{x \rightarrow 2^{+}} g(x)=2^{3}=8
\end{aligned}
$$

so

$$
\lim _{x \rightarrow 2} g(x)=8
$$

For g to be continuous at $x=2$ we require that

$$
\lim _{x \rightarrow 2} g(x)=g(2) \Longrightarrow 8=C
$$

Problem 3: (a) State the definition of the derivative of a function $f(x)$.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(b) Using your definition in part (a), evaluate the derivative of

$$
f(x)=x^{2}-3 x
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-3(x+h)\right]-\left[x^{2}-3 x\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-3 x-3 h-x^{2}+3 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-3 h}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h-3)=2 x-3
\end{aligned}
$$

Problem 4: Evaluate the following derivatives.
(a) $\frac{d}{d x}\left(x^{8}-\sqrt[4]{x}+\frac{2}{x^{3}}+\pi^{4}+x^{\pi}\right)$

$$
=8 x^{7}-\frac{1}{4} x^{-3 / 4}-6 x^{-4}+\pi x^{\pi-1}
$$

/3
(b) $\frac{d}{d x} \sqrt{x^{2}+2 x-3}$

$$
=\frac{1}{2}\left(x^{2}+2 x-3\right)^{-1 / 2} \cdot(2 x+2)
$$

(c) $f^{\prime \prime}(x)$ where $f(x)=x \sin 2 x$

$$
\begin{aligned}
f^{\prime}(x) & =\sin 2 x+2 x \cos 2 x \\
\Longrightarrow f^{\prime \prime}(x) & =2 \cos 2 x+2 \cos 2 x-4 x \sin 2 x
\end{aligned}
$$

(d) $\frac{d}{d x}\left(\frac{x}{1+\frac{1}{x}}\right)$

$$
=\frac{(1)\left(1+\frac{1}{x}\right)-x\left(-x^{-2}\right)}{\left(1+\frac{1}{x}\right)^{2}}
$$

Problem 5: Find an equation for the tangent line to the graph of

$$
y=x^{3}-5 x^{2}+7
$$

at the point $(2,-5)$.
The slope of the tangent line is given by:

$$
y^{\prime}(x)=3 x^{2}-10 x \Longrightarrow y^{\prime}(2)=3\left(2^{2}\right)-10(20)=-8
$$

so the equation of the tangent line is

$$
\begin{aligned}
y & =y_{0}+m\left(x-x_{0}\right) \\
& =(-5)+(-8)(x-2) \\
\Longrightarrow & y
\end{aligned}
$$

Problem 6: The graph of $y=f(x)$ is shown below. On same set of axes, sketch the graph of $y=f^{\prime}(x)$.

