

MATH 114 Calculus I

S01 – Richard Taylor

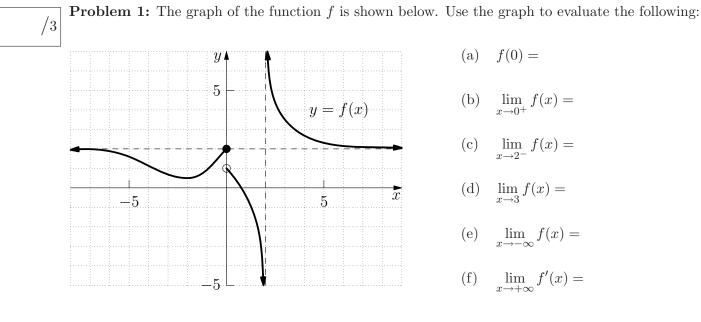
FINAL EXAM

26 April 2007 14:00–17:00 Gym M

PROBLEM	GRADE	OUT OF
1		3
2		5
3		10
4		4
5		4
6		6
7		4
8		12
9		4
10		5
11		5
12		5
13		4
14		6
15		5
16		7
17		3
18		8
TOTAL:		100

Instructions:

- 1. Read all instructions carefully.
- 2. Read the whole exam before beginning.
- 3. Make sure you have all 11 pages.
- 4. Organization and neatness count.
- 5. You must clearly show your work to receive full credit.
- 6. You may use the backs of pages for calculations.
- 7. You may use an approved calculator.



Problem 2: (a) State the *definition* (i.e. using limits) of the derivative of a function f.

(b) Use the *definition* of the derivative to find f'(x) for the function $f(x) = 3x^2 - 8x$.

Problem 3: Evaluate the following limits. (a) $\lim_{x \to -5} \frac{x^2 + 2x - 15}{2x^2 + 10x}$

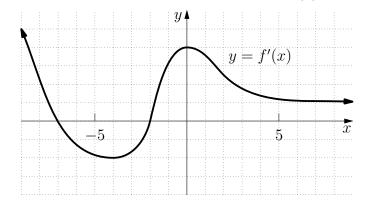
(b)
$$\lim_{x \to 0} \frac{3 - 3\cos x}{x}$$

(c)
$$\lim_{x \to +\infty} \frac{8 - 3x^2}{x^2 - 2x - 3}$$

(d)
$$\lim_{x \to 2^+} \frac{2x-5}{(x-2)^3}$$

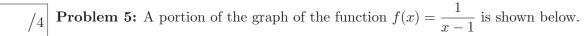
(e)
$$\lim_{x \to +\infty} x e^{-x}$$

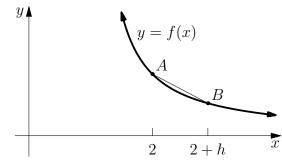
Problem 4: For a certain function f, the graph of its derivative, f'(x), is shown below.



Answer the following questions about f (not about f').

- (a) On what interval(s) is f decreasing?
- (b) On what interval(s) is f concave up?





(a) Find and simplify an expression for the slope of the line segment \overline{AB} .

(b) Use your answer to (a) to find the slope of the line tangent to the graph at the point A.

Problem 6: For a certain function f the following is known:

the domain is
$$(-\infty, \infty)$$
 $f'(x) = \frac{1-x^2}{(1+x^2)^2}$ $f''(x) = \frac{2x(x^2-3)}{(1+x^2)^3}$

(a) Find the intervals of increase and decrease for f.

(b) Find the intervals of concavity for f.

 $\frac{4}{-5}$

-5

Problem 7: Sketch a possible graph of a continuous function f that has the following properties:

 $26 \ {\rm April} \ 2007$

/12 Problem 8: Find the indicated derivatives:
(a)
$$y'$$
 if $y = \frac{2}{x} + \sqrt[5]{x} - e^x + \pi^2$

(b)
$$\frac{dz}{dt}$$
 if $z = \frac{e^{t^2}}{t^2 - 3}$

(c)
$$f'(x)$$
 if $f(x) = (x + \arcsin x)^5$

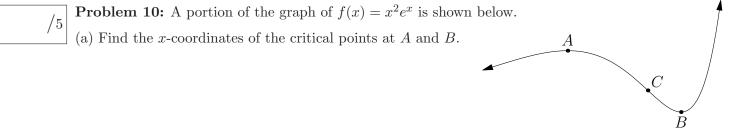
(d)
$$g'(x)$$
 if $g(x) = (\ln x)(\tan(2x))$

Problem 9: The total sales (in thousands of dollars) of a product after t months on the market is given by

$$S(t) = \sqrt{t^2 + 7}; \quad t \ge 0.$$

(a) Calculate S(3) and S'(3).

(b) In words, interpret your answers to part (a). Include appropriate units in your answer.



(b) Find the x-coordinate of the inflection point at C.

 $5x^2y + 11\cos y = e^{x-2} + 5x$

at the point (2,0).

/5

/5

Problem 12: For the function $f(x) = \sqrt[3]{x}$ (a) find the equation of the tangent line to the graph of f at the point (8,2).

(b) use your answer to part (a) to estimate $\sqrt[3]{8.06}$.

Problem 13: Use logarithmic differentiation to find $\frac{dy}{dx}$ if $y = (\arctan x)^x$. /4

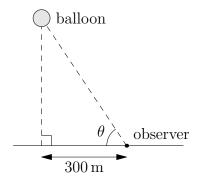
Problem 14: An antibiotic is introduced to a bacterial culture. The number of bacteria remaining after t days is given by the function

 $N(t) = 20t^3 - 210t^2 + 360t + 1100; \quad 0 \le t \le 7.$

(a) Find the absolute maximum and minimum number of bacteria over the 7-day period.

(b) Find the time at which the number of bacteria is decreasing at the *fastest rate*.

/5 Problem 15: A weather balloon leaves the ground 300 m from an observer and rises vertically at a speed of 12 m/s. How fast is the angle, θ , of the line of sight changing when the balloon is 400 m high?



Problem 16: The displacement (in cm) at time
$$t$$
 (in seconds) of a particle moving horizontally along a straight line is given by

$$x(t) = -3t^3 + 22.5t^2 - 36t + 20; \quad t \ge 0$$

(a) Find the velocity and the acceleration at t = 3.

(b) Describe the motion of the particle at t = 3. (Is it moving to the right or to the left? Is it speeding up or slowing down? Explain.)

(c) Find the total distance traveled by the particle between t = 0 and t = 3.

Problem 17: The parametric equations for a given curve are

$$x(t) = 2 + \cos(t + \frac{\pi}{2})$$
$$y(t) = t + e^{t}$$

Find the slope of the line tangent to the curve at the point where t = 0.

Problem 18: A closed cylindrical can must have a volume of 1000 cm^3 . The materials to make the can cost $\frac{5}{\text{cm}^2}$ for the top and bottom, and $\frac{2}{\text{cm}^2}$ for the remaining (curved) part of the can. What is the minimum possible cost for the materials to make such a can?

The volume of a cylinder is $V = \pi r^2 h$.

The surface area of a closed cylinder is $A = 2\pi r h + 2\pi r^2$.

