Name: \qquad
Student \#: \qquad

Midterm Exam \#1

MATH 112 - Calculus I
Okanagan University College
21 October 2003

Instructions:

1. Read all instructions carefully.
2. Read the whole exam before beginning; make sure you have all 6 pages.
3. Write your name on each page (in case the exam pages become separated).
4. Organize and write your solutions neatly. If you run out of room, continue your solution on the back of the page.
5. Show your work, and explain yourself: part marks will be awarded even if you don't obtain the final answer.

Problem 1: Evaluate the following limit:

$$
\lim _{x \rightarrow 2} \frac{x^{2}+5 x-14}{x^{2}-4}
$$

Problem 2(a): State the definition of the derivative, $f^{\prime}(x)$.

Problem 2(b): Use the definition of $f^{\prime}(x)$ to compute the derivative of $/ 4$

$$
f(x)=\frac{2}{x}
$$

\qquad

Problem 3(a): Compute the derivative of $g(x)=(x+3)^{2} \cos (x)$.

Problem 3(b): For $g(x)$ as given in problem 3(a), find an equation for the tangent line to the graph of $y=g(x)$ at $x=0$.

Problem 3(c): Compute the derivative of $h(t)=\frac{\sqrt{t^{2}+1}}{4 t^{3}-t}$.
\qquad

Problem 3(d): Compute the derivative of $F(w)=e^{\cos \left(w^{2}\right)}$.
\qquad

Problem 4(a): Suppose $f(x)$ is defined by

$$
f(x)= \begin{cases}m x+b & \text { if } x \leq 0 \\ 3 x^{2}+1 & \text { if } x>0\end{cases}
$$

where m and b are constants. For what value of b is $f(x)$ a continuous function? (Justify your answer.)

Problem 4(b): Let b have the value you found in problem 6(a). For what value of m is $f(x)$ a differentiable function?

Problem 4(c): Sketch a graph of $y=f(x)$, for the values of m and b you found in parts (a) and (b).
\qquad

Problem 5: An architect wishes to design a room as shown in the diagram (a rectangular region with two opposing walls replaced by semicircles). The area of the room must be 3π (meters squared). Flat walls cost $\$ 100$ per linear meter to build, and curved walls cost $\$ 200$ per linear meter. How should the dimensions of the room be chosen to minimize the cost of building the walls?

Problem 6(a): A bicycle is travelling in a straight line. Its distance from its starting point at time t is given by a function $x(t)=\frac{t^{3}}{3}-5 t^{2}$. At what times is its velocity equal to zero?

Problem 6(b): At what times is its acceleration equal to zero?

