$\begin{array}{c} \textbf{High School Mathematics Synopsis} \\ \text{Math } 114-\text{Calculus I} \end{array}$

Richard Taylor

Analytic Geometry

 $m = \frac{y_2 - y_1}{x_2 - x_1}$ Slope of a line:

Equation of a line: $y - y_1 = m(x - x_1)$

Distance:

 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ (you should be able to derive this from Pythagoras' Theorem)

equation: $(x-a)^2 + (y-b)^2 = r^2$ area: $A = \pi r^2$ Circles:

circumference: $C = 2\pi r$

Solid Geometry

	Volume	Surface Area
sphere	$\frac{4}{3}\pi r^3$	$4\pi r^2$
cylinder	$\pi r^2 h$	$2\pi rh + 2\pi r^2$
cone	$\frac{1}{3}\pi r^2 h$	

Classical Algebra

Factorizations:
$$b^2 - a^2 = (a+b)(a-b)$$

$$b^{3} - a^{3} = (b - a)(b^{2} + ab + a^{2})$$

$$b^{3} + a^{3} = (b + a)(b^{2} - ab + a^{2})$$

Geometric sum:
$$1 + r + r^2 + \dots + r^{n-1} = \frac{1 - r^n}{1 - r}$$
 for $r \neq 1$

Binomial theorem:
$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^r$$
 where $\binom{n}{r} = \frac{n!}{r!(n-r)!}$

Trigonometric Functions

Definition:

For any real number θ , the functions $\cos \theta$ and $\sin \theta$ are defined to be the x- and y-coordinates of the point on the unit circle such that the radius makes an angle of θ radians with the positive x-axis, measured counterclockwise.

The tan, sec and csc functions are defined as follows:

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $\sec \theta = \frac{1}{\cos \theta}$ $\csc \theta = \frac{1}{\sin \theta}$

Properties:

Pythagorean identities:
$$\cos^2 \theta + \sin^2 \theta = 1$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

Periodicity:
$$\cos(\theta + 2\pi) = \cos(\theta)$$

$$\sin(\theta + 2\pi) = \sin(\theta)$$

$$\tan(\theta + \pi) = \tan(\theta)$$

Symmetry
$$\sin(-\theta) = -\sin\theta$$

$$\cos(-\theta) = \cos\theta$$

$$\tan(-\theta) = -\tan\theta$$

Addition identities:
$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

Double angle identities:
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$\sin 2\theta = 2\sin\theta\cos\theta$$

Exponential and Logarithmic Functions

Definition of a Logarithm: $y = \log_a x$ means that $x = a^y$ for all x > 0.

Cancellation identities: $\log_a(a^y) = y$ for all y

 $a^{\log_a x} = x$ for all x > 0

Basic properties: $a^p a^q = a^{p+q}$

 $(a^p)^q = a^{pq}$

 $a^p b^p = (ab)^p$

 $a^{p/q} = \sqrt[q]{a^p} = (\sqrt[q]{a})^p$

 $\log_a(xy) = \log_a x + \log_a y$

 $\log_a(\frac{x}{y}) = \log_a x - \log_a y$

 $\log_a(x^y) = y \log_a x$

Change of base: $b^x = a^{x \log_a b}$

 $\log_b x = \frac{\log_a x}{\log_a b}$

Very common error: note that $\sqrt[q]{x+y} \neq \sqrt[q]{x} + \sqrt[q]{y}$

The Absolute Value

Definition: $|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$

Properties: |ab| = |a||b|

 $|a+b| \le |a| + |b|$

|a| < b is equivalent to -b < a < b