
Programming the UNIX/linux Shell

Claude Cantin (claude.cantin@nrc.ca)

http://www.nrc.ca/imsb/rcsg

Research Computing Support Group
Information Management Services Branch

National Research Council

April 16, 2006

1

This page intentionally left blank.

2

This document was produced by Claude Cantin of the National Research Council of
Canada. Reproductions are permitted for non-profit purposes provided the origin of the
document is acknowledged.

Claude Cantin
National Research Council of Canada

3

History of printing:

Date Copies

March 2003 200
March 2001 200
June 1999 200
November 1997 200
July 1996 200
November 1995 150
March 1995 150
February 1994 150
October 1993 100
August 1993 75
February 1993 75
November 1992 35
September 1992 40
February 1992 50
December 1991 50
April 1991 50
September 1990 40
January 1990 40

Table 0.1: Printings.

Contents

1 Programming the Shell 3
1.1 Introduction . 3

1.1.1 Bourne -- C shell comparisons . 3
1.1.2 Variables . 4

1.2 A Simple Script . 4

1.2.1 Running the Script . 5
1.3 Special Characters . 5

1.3.1 ’...’: Turn off Meaning of Special Characters. 6
1.3.2 "...": Turn off Meaning of Special Characters EXCEPT $ and ‘ . . 6
1.3.3 ‘...‘: Use Output as Content of Variable 6

1.4 Verbatim echo . 7
1.5 Parameters and the Shell . 7

1.5.1 $0: The Name of the Invoking Command 8

1.5.2 $1 $2 $3 ... $9, $*: Shell Parameters 8
1.5.3 $#: Number of Parameters . 8

1.5.4 shift: Shifts Parameters . 9
1.6 read: Reading Input from User . 9
1.7 test: Comparisons . 10

1.7.1 Testing/Comparing Numbers . 10
1.7.2 Verifying File Types . 11
1.7.3 Comparing Strings . 12

1.7.4 Combining test: Expressions . 12
1.8 Control Structures . 13

1.8.1 for var in list . 13
seq: sequence of numbers (linux) . 14

1.8.2 while condition . 14

i

ii CONTENTS

1.8.3 until loop . 15
1.8.4 if statement . 15
1.8.5 case: Selections . 16

1.9 expr: Doing Arithmetic . 18
1.10 Subroutines . 19
1.11 Miscellaneous . 20

1.11.1 break . 20
1.11.2 $$: Process ID . 21
1.11.3 $!: PID (Process ID) of the previous background command 21
1.11.4 $?: Return Code . 21
1.11.5 A || B: Either or . 21
1.11.6 A && B: A or Both . 21
1.11.7 set: Change Command-line Parameters 22

1.12 trap: Trap signals . 22
1.13 Tips Using Shell Commands . 23

1.13.1 basename: Current Directory . 24
1.13.2 dirname: Directory Path . 24
1.13.3 stty -echo: Passwords . 25
1.13.4 cut, awk: Cut Selected Fields . 25

1.14 Exercises . 26

2 Solutions to Exercises 29
2.1 Programming the Shells . 29

3 Bibliography 41

List of Tables

0.1 Printings. 3

1.1 Signal numbers for trap command. 23

1

2 LIST OF TABLES

Chapter 1

Programming the Shell

The basics of both the Bourne and the C shells have already been introduced. This chapter
will concentrate on programming the shells.

All examples shown will use the Bourne shell. Most shell scripts are written in the Bourne
shell because it is the only shell found on *ALL* UNIX systems. Scripts written in the Korn
shell are gaining popularity.

C shell scripts are possible, but not recommended. Although the C shell is great for
interactive work, it has many drawbacks in script programming.

1.1 Introduction

1.1.1 Bourne -- C shell comparisons

A Bourne Shell Script is a file containing a series of Bourne Shell commands, as well as
control structures such as if statements, while loops, etc. Parameters can be passed to the
script and data can be read from the keyboard.

Bourne shell scripts are usually Algol-66 look-alikes, whereas C shell scripts look more
like C program constructs.

The C shell is slower to start execution (as it looks in the .cshrc file EVERY TIME it
is called) and produces a hash table of all paths for faster execution. The Bourne shell is
slower, but starts executing immediately.

For that reason, short scripts are executed much faster in the Bourne Shell than the
C shell (this is noticeable for small SLOW machines; with systems running at 30 to 130
MIPS/CPU, the difference in speed is almost insignificant). Large scripts should most likely

3

4 CHAPTER 1. PROGRAMMING THE SHELL

be written in a compiled language—preferably C—because compiled code executes much
faster than interpreted code.

Many features of the Bourne shell are also found in the C shell. Parameters are interpreted
in the same way. Variable assignments are very similar. UNIX commands are exactly the
same. Control structures and comparisons differ the most.

More information on the C shell can be found in [7, pp. 484-494] and your systems
manuals. The Bourne shell is discussed in [7, pp. 415-461] and your systems manuals.

Again, all examples shown in this chapter will follow the Bourne shell syntax.

1.1.2 Variables

Variables are, by the author’s convention, always in UPPER CASE CHARACTERS. This
makes them easier to recognize.

Variables are assigned a value(s) using an assignment operation:

VARIABLE=string

Note that there are NO spaces before and after the equal (=) sign: this is essential, otherwise
the shell would interpret those spaces.

The content of the variable is represented by prefixing the variable with a dollar sign ($).
For example, $FRUIT means the content of variable FRUIT.

1.2 A Simple Script

#!/bin/sh

echo "Hello World."

exit 0

The first line of every script should start with a hash sign followed by an exclamation mark.
This means “use the program that follows to run this script”. In this example, the program
used to run the above script is /bin/sh, or the Bourne shell. The program could have been
/bin/csh for the C shell, or /bin/ksh for the Korn shell, or any other program that could
interpret the commands that follow.

The first line may also contain flags for the program. Examples of such flags are

-v This causes every line to be displayed as it is executed.

-x Prints the commands and their parameters as they are executed. Useful for debugging.

1.3. SPECIAL CHARACTERS 5

-f For the C shell. Inhibit execution of .cshrc.

The second line of the program simply displays the string Hello World.

REMEMBER: every script should start with #!shell name where shell name is the name
of the shell in which the script is written.

NOTE: the echo command may include special characters:

\n: newline.
\c: suppress newline.
\t: insert TAB.

When such special characters are used, some shells, namely bash in linux, may require
the -e flag. Others do not require it. Experimentation will tell you if you need that flag or
not.

1.2.1 Running the Script

To run the above script, one may issue

sh program

Or, after giving the program execute permission (chmod +x program), just

program

1.3 Special Characters

As with the Bourne shell features already covered, scripts:

• can contain filenames and directory names with metacharacters.

• can use semicolons (;) to separate commands on one line.

• can use redirection signs (<, >, >>).

• understand pipes (|).
In addition to the above-mentioned, scripts may also contain C and Bourne shell features.

6 CHAPTER 1. PROGRAMMING THE SHELL

1.3.1 ’...’: Turn off Meaning of Special Characters.

Single quotes are used within the shell and within the scripts to turn off the meaning of
special characters, including spaces. A dollar sign ($) will normally be interpreted as a
dollar sign, not the content of the variable following that $ sign.

For example,

sh prompt> VARI=me
sh prompt> echo $VARI
sh prompt > me

sh prompt> echo ’$VARI’
sh prompt> $VARI

1.3.2 "...": Turn off Meaning of Special Characters EXCEPT $
and ‘

Within double quotes, all special characters are interpreted as their ASCII characters (not
what they represent). This excludes the dollar sign ($) and the back quote (‘).

Adding to the above example,

sh prompt> echo VARI = $VARI
VARI = me

sh prompt> echo ”VARI = $VARI”
VARI = me

NOTE the spaces in the above example: they are printed as seen (spaces are significant
within quotes).

1.3.3 ‘...‘: Use Output as Content of Variable

To give a variable the value of the output of a command, one uses back quotes:

sh prompt> VARI=”me”
sh prompt> echo $VARI
me

sh prompt> OTHER=‘echo $VARI‘
sh prompt> echo $OTHER
me

1.4. VERBATIM ECHO 7

The output of the command within the back quotes is taken to be the new content of
the first variable. Another short example:

sh prompt> TODAY=‘date‘
sh prompt> echo $TODAY
Mon Aug 20 17:35:51 EDT 1990

sh prompt> echo ”today’s date is $TODAY”
today’s date is Mon Aug 20 17:35:51 EDT 1990

Note that by default, the output of a series of commands is sent to the standard output.
If the output is preceded by an = sign, the variable preceding the equal sign takes the value
of the output of the command.

1.4 Verbatim echo

Contents of variables and strings can easily be displayed with the echo command. cat may
be used to display multi-line strings without using multiple echo commands.

cat << ’string’
This is part of the script being output in a verbatim fashion. All
lines preceding ‘string’ would be displayed as seen in the script
itself.
string

The message to be displayed must be terminated with string on a line by itself, with no
leading blanks.

Verbatim echo is useful when lengthy instructions are required for the user of a shell
script to help him/her proceed.

1.5 Parameters and the Shell

A shell is invoked by typing its name. Parameters are passed to the script by appending
them to the script name, with spaces as separators.

8 CHAPTER 1. PROGRAMMING THE SHELL

1.5.1 $0: The Name of the Invoking Command

The special variable $0 represents the name of the executing program. The following shell,
if called script.sh would output This program is called script.sh.:

#!/bin/sh

echo This program is called $0.

exit 0

1.5.2 $1 $2 $3 ... $9, $*: Shell Parameters

The first parameter to the shell is known as $1, the second as $2, etc. The collection of ALL
parameters is known as $*.

Consider the following as an example (file prog):

#!/bin/sh

echo the first parameter is $1

echo the second parameter is $2

echo the collection of ALL parameters is $*

exit 0

The output of that program could be:

sh prompt> prog first second
the first parameter is first

the second parameter is second

the collection of ALL parameters is first second

sh prompt>

Only nine parameters can be read using the $number scheme. The $* along with the
shift instruction is one way to read the remainder of the parameters. Another way is to
use the for var in $* command, to be described in the upcoming Control Structures

section.

1.5.3 $#: Number of Parameters

The number of parameters used can be obtained by looking at the value of $#.

1.6. READ: READING INPUT FROM USER 9

1.5.4 shift: Shifts Parameters

When a large number of parameters (> 9) are passed to the shell, shift can be used to read
those parameters. If the number of parameters to be read is known, say three, a program
similar to the following could be written:

#!/bin/sh

echo The first parameter is $1.

shift

echo The second parameter is $1.

shift

echo The third parameter is $1.

exit 0

Obviously the above example contains redundancy, especially if there are a large number
of parameters.

To solve this problem: use a for or while loop.

1.6 read: Reading Input from User

The following short example shows how read can be used to get input from the user:

#!/bin/sh

echo -e "Please enter your name: \c"

read NAME

echo "Your name is $NAME."

exit 0

The \c means that the line feed will be suppressed, so that the prompt sits at the end of the
line, not at the beginning of the following line.

Two more common controls available to the echo command are to use \n to add a line
feed, and \t to add a tab.

Multiple values may be read on a single line by using:

#!/bin/sh

echo -e "Please enter two numbers: \c"

read NUM1 NUM2

echo The numbers entered are $NUM1 and $NUM2

exit 0

10 CHAPTER 1. PROGRAMMING THE SHELL

This ensures that if two numbers are entered on a single line, they will be read within two
variables. If three numbers were entered, the second variable (NUM2) would contain the
last two numbers.

Assuming three numbers were the input of the above example, the first two numbers
could be assigned to the first variable by entering them as

num1\ num2 num3

The backslash (\) allows the blank space between num1 and num2 to be part of the
variable (ordinarily, spaces are used as field seperators.

1.7 test: Comparisons

A common requirement of many programs is to compare two, three, or more things together.
Strings and numbers may be compared. Files are often checked for their lengths and/or
existence.

All such verifications are done using variants of the test command.
The general usage of test is

test expression

If expression is true, a return code of 0 is supplied.
If expression is false, a non-zero return code is generated.

1.7.1 Testing/Comparing Numbers

The primitives available for comparison of numeric values are

• -eq, -ne: equal, not equal.

• -gt, -lt: greater, less than.

• -ge, -le: greater or equal, less or equal.

For example:

#!/bin/sh

if test $# -le 5

1.7. TEST: COMPARISONS 11

then

echo Less than or equal to five parameters.

else

echo More than 5 parameters.

fi

exit 0

1.7.2 Verifying File Types

To test file types, a number of primitives are used (taken from [7, p. 439]):

-s checks that the file exists and is not empty.

-f checks that the file is an ordinary file (not a directory).

-d checks whether the file is really a directory.

-x checks that the file is executable.

-w checks that the file is writeable.

-r checks that the file is readable.

An example would be where a program needs to output something to a file, but first
checks that the file exists:

#!/bin/sh

if test ! -s arg.file

then

echo "arg.file is empty or does not exist."

ls -l > arg.file

exit

else

echo "File arg.file already exists."

fi

exit 0

Note the exclamation mark within the test sequence. The exclamation mark means “not”.

12 CHAPTER 1. PROGRAMMING THE SHELL

1.7.3 Comparing Strings

String comparisons are done using = and !=:

#!/bin/sh

if test $# -eq 0

then

echo Must provide parameters.

exit 1

fi

while test ! $1 = "end"

do

echo parameter is $1

shift

if test $# -eq 0

then

echo Parameter list MUST contain the ’"’end’"’ string.

exit

fi

done

echo Done: I"’"ve hit the ’"’end’"’ string.

exit 0

Note that the above example could have been MUCH shorter if no error checking took place.
The length of strings can also be tested using:

-z : check if the string has zero length.

-n : check if the string has a non-zero length.

1.7.4 Combining test: Expressions

Two or more test expressions may be combined, using the -o (or) and/or the -a (and)
attributes:

#!/bin/sh

if test $# -eq 0

then

1.8. CONTROL STRUCTURES 13

echo Must provide parameters.

exit 1

fi

if test $# -gt 2 -a $# -lt 5

then

echo There are 3 or 4 parameters.

fi

if test $# -ge 1 -a $# -lt 3

then

echo There are 1 or 2 parameters.

fi

exit 0

Note that -a has precedence over -o.

1.8 Control Structures

1.8.1 for var in list

The last example could easily be rewritten as

#!/bin/sh

for i in $*

do

echo The parameter is $i.

done

exit 0

In the above program $* could have been replaced by any list of names. The program
would then be changed to:

#!/bin/sh

for i in Claude Paul Wayne Roger Tom

do

echo The name is $i.

done

exit 0

14 CHAPTER 1. PROGRAMMING THE SHELL

Within the shell, parameters are read as $1 for the first parameter, $2 for the second
parameter, $3 for the third parameter, and so on. $* is the entire list of parameters.

If the “in list” is omitted, the list taken is the list of parameters passed to the shell on
the command line.

seq: sequence of numbers (linux)

If the script is expecting to go through a sequence of numbers, the seq command may be
used to control the looping:

#!/bin/sh

for i in ‘seq 5 15‘

do

echo "Number in sequence is $i."

done

exit 0

seq is a linux command that prints a sequence of numbers. There are 3 ways to use it: with
one, two or three parameters:

• 1 parameter: sequence starts at one, increment of one, and ends at num1.

• 2 parameters: sequence starts at num1, increment of one, and ends at num2.

• 3 parameters: sequence starts at num1, increment of num2, and ends at num3

num1, num2 and num3 are the first, second, and third parameters to seq. Numbers may be
fractions and negative numbers are allowed.

seq is a linux-specific command. Neither IRIX nor Solaris include that command.

1.8.2 while condition

The condition involves the test statement seen above, where one value is compared with
another. If the comparison is true, the commands within the loop are executed. If not, they
are not executed.

Using another form of the above example,

#!/bin/sh

while test $# -gt 0; do

1.8. CONTROL STRUCTURES 15

echo parameter $1

shift

done

exit 0

Note that the while and do are on the same line, and that in this case they must be
separated by a semicolon. The semicolon is a command separator.

1.8.3 until loop

Again, another way to write the above example is to use the until control sequence:

#!/bin/sh

until test $# -eq 0

do

echo parameter $1

shift

done

exit 0

1.8.4 if statement

What would happen if no parameters had been passed to the script? Here is how one can
verify that there is at least one parameter in the list:

#!/bin/sh

if test $# -eq 0

then

echo There must be at least one parameter on the command line

else

until test $# -eq 0

do

echo parameter $1

shift

done

fi

exit 0

Another way to write this same program is

16 CHAPTER 1. PROGRAMMING THE SHELL

#!/bin/sh

if test $# -eq 0

then

echo There must be at least one parameter on the command line

exit 1

fi

until test $# -eq 0

do

echo parameter $1

shift

done

exit 0

Note that the format of the if statement is

if comparison
then

. . .
else

. . .
fi

The else is optional, or if followed by another if, else if could be replaced by elif. The
statement is ended by fi (“if” spelled backwards).

1.8.5 case: Selections

Often, one wants to perform specific actions on specific values of a variable. This is an
example of such a program:

#!/bin/sh

case $# in

0) echo no parameters;;

1) echo only one parameter.

echo put commands to be executed here.;;

*) echo more than one parameter.

echo enter code here.;;

esac

exit 0

1.8. CONTROL STRUCTURES 17

Wildcards can be used as items within the case statement. Hence * means “anything
matches”.

Note the use of the double semicolons. These are always required to terminate case

pattern statements.

A much more powerful case example would be:

while :

do

echo -e "Would you like to continue? \c"

read ANS

case $ANS in

[yY] | [yY][eE][sS]) echo "Fine, then we’ll continue."

break

;;

[nN] | [nN][oO]) echo "We shall now stop."

exit

;;

*) echo "You must enter a yes or no verdict!"

esac

done

echo "\nWe are now out of the while loop."

The example shows a number of tricks sometimes used during shell programming. The
first is the use of an infinite while loop by using the : operator instead of a test operator.
The : always returns a successful result (represented by a return code of 0). (In general,
the test operator is actually not needed – but is almost always used – to control loops. As
test always returns 0 for a successful comparison and 1 for a non-successful comparison,
it is easy to use. In reality, any appropriate UNIX command could be used to control the
loops. The loop would then be entered if a return code of 0 were returned by the command.)

The second trick is done with the use of the break command. When break is encountered,
the execution flow branches to the end of the current loop. In this case, the while loop.

Finally, the content of ANS is compared with a number of pattern matching sequences.
Those pattern matching sequences actually replace a large number of if statements. In our
case, the statement

[Yy] | [Yy][Ee][Ss])

18 CHAPTER 1. PROGRAMMING THE SHELL

would match Y, y, YES, YEs, Yes, yES, yEs, yeS, YeS and yes. The vertical bar | is an OR

sign.
In fact, all shell metacharacters are allowed in forming a pattern match string. In the

example above:

[a-z]*)

would match any string beginning with a lower case character.

1.9 expr: Doing Arithmetic

expr is used to perform arithmetic manipulations. Five functions can be used:

+ addition.

- subtraction.

* multiplication.

/ division.

% remainder.

Here is an example that uses all of them:

#!/bin/sh

if test $# -lt 2 -o $# -gt 2

then

echo Must provide two and only two parameters.

exit 1

fi

SUM=‘expr $1 + $2‘

DIFF=‘expr $1 - $2‘

PRODUCT=‘expr $1 "*" $2‘

QUOTIENT=‘expr $1 / $2‘

REM=‘expr $1 % $2‘

TOTAL=‘expr $SUM + $DIFF + $PRODUCT + $QUOTIENT + $REM‘

echo The sum is $SUM.

echo The difference is $DIFF.

1.10. SUBROUTINES 19

echo The product is $PRODUCT.

echo The quotient is $QUOTIENT.

echo The remainder is $REM.

echo The total sum of all these numbers is $TOTAL.

exit 0

NOTES:

• The entire expr line is enclosed within back quotes. Normally, the output of expr is
the standard output. Including the back quotes will assign the result to a variable.

• The * is between double quotes. If it was not, the shell would interpret it as the
wildcard character.

• expr is a shell feature found in both the Bourne and C shells.

1.10 Subroutines

Scripts, like any other programming language, may contain subroutines. A common way to
use a subroutine is:

#!/bin/sh

usage()

{

echo " "

echo "You have not used this program correctly."

echo "Use as: prog_name par1 par2 ..."

echo " "

exit 1

}

one_par()

{

echo

echo There was only one parameter on the command line.

echo

return 1

20 CHAPTER 1. PROGRAMMING THE SHELL

}

two_par()

{

echo

echo There were two parameters on the command line.

echo

return 1

}

larger()

{

echo

echo There were many parameters.

echo

return 1

}

case $# in

0) usage;;

1) one_par ;;

2) two_par ;;

*) larger ;;

esac

exit 0

Note that routines must be defined prior to being used and that all variables are global.

1.11 Miscellaneous

1.11.1 break

This command tells the shell to exit the innermost loop it is currently in.

1.11. MISCELLANEOUS 21

1.11.2 $$: Process ID

Within a script, $$ represents the Process ID of the currently running script. This allows
unique file names for temporary files created by the script. For example

/tmp/temp.$$

is assured a unique file name.

1.11.3 $!: PID (Process ID) of the previous background command

1.11.4 $?: Return Code

Any command always returns a Return Code, represented by the $? variable. A successful
command usually returns 0.

1.11.5 A || B: Either or

A and B each represent a distinct set of commands. If the return code from set A is 0
(successful), then the B side will not be executed.

If the return code from set A is non-zero (unsuccessful), then set B will be executed.
For example,

#!/bin/sh

FILE="/usr/tmp/junk"

test -f $FILE || {

echo "File $FILE does not exist."

echo "Let’s create it."

touch $FILE

}

1.11.6 A && B: A or Both

A and B each represent a distinct set of commands. If the return code from set A is 0
(successful), set B will be executed. Otherwise, set B will not be executed.

For example,

#!/bin/sh

FILE="/usr/tmp/junk"

test -f $FILE && rm $FILE

22 CHAPTER 1. PROGRAMMING THE SHELL

first verifies that the file exists, then erases it. If it did not exist, the rm command would
not have been issued.

A series of commands could have been executed, as shown in the previous “||” example.

1.11.7 set: Change Command-line Parameters

Typically, command line parameters are typed on the same line as the command. Those
parameters may be replaced at any time using the set command:

#!/bin/sh

echo "Current parameters are $*."

set ‘date +%B‘

echo "The current month is $1."

If there were no parameters on the command line, set would create the parameters.
set is sometimes used to generate separate fields out of a pathname. A trick is to use it

along with redefining IFS, the variable that controls what a field separator is:

set -- ‘(IFS=/; echo $HOME)‘

This command temporarily defines ”/” as a field separator, and sets each directory as
a separate argument to the command line. The ”--” ensures that if the variable being
displayed (in this case $HOME, contains a dash (-), that character would be interpreted as a
dash, not as an option to the command.

NOTE: this works only with the bash shell.

1.12 trap: Trap signals

Processes may be sent signals using either the kill command, or a control key combination
such as CTRL-C. The interrupt signal (CTRL-C) usually kills the process.

Table 1.1 taken from [6, p. 883] shows some of the signals used in Shell Programming.
The trap command typically appears as one of the first lines in the shell script. It

contains the commands to be executed when a signal is detected as well as what signals to
trap.

#!/bin/sh

TMPFILE=/usr/tmp/junk.$$

1.13. TIPS USING SHELL COMMANDS 23

Signal Number Signal Name Explanation

0 Normal exit exit command.
1 SIGHUP When session disconnected.
2 SIGINT Interrupt – often CTRL-c.
15 SIGTERM From kill command.

Table 1.1: Signal numbers for trap command.

trap ’rm -f $TMPFILE; exit 0’ 1 2 15

.

.

.

Upon receiving signals 1, 2 or 15, $TMPFILE would be deleted and the script would
terminate the shell script normally. This shows how trap may be used to clean up before
exiting.

#!/bin/sh

TMPFILE=/usr/tmp/junk.$$

trap ’’ 0 1 2

.

.

.

The above example shows how trap may be used to ignore specific signals (0, 1 and 2),
while NOT interrupting the current line of execution.

NOTE that when the signal is received, the command currently being executed is inter-
rupted (except in the case where there is nothing to be executed between the two quotation
signs), and execution flow continues at the next line of the script.

1.13 Tips Using Shell Commands

This section discusses a few UNIX commands sometimes used in scripts.

24 CHAPTER 1. PROGRAMMING THE SHELL

1.13.1 basename: Current Directory

basename directory

returns the portion of directory after the last “/”, i.e. the current directory name.
For example,

#!/bin/sh

CUR_DIR=‘basename \$cwd‘

will set CUR DIR to be the current directory name from the last “/” to the end (if the current
directory is /usr/people/cantin, it would return cantin).

1.13.2 dirname: Directory Path

dirname directory

will return the path of the current directory from the beginning of the directory name to the
last “/”.

For example,

dirname /usr/people/cantin

will return /usr/people. But

dirname cantin

will return . (dot).
For example, the following script will take as its first parameter, the name of a directory,

and return its absolute path name. The directory must be given either as a relative or
absolute path name.

#!/bin/sh

Returns full path name of a directory.

if [$# -ne 1]

then

echo " "

echo " $0: must have one parameter."

echo " "

exit

1.13. TIPS USING SHELL COMMANDS 25

fi

C_DIR=‘pwd‘

if test "‘dirname $1‘" = "."

then

FULL_NAME=$C_DIR/$1

else

FULL_NAME=$1

fi

echo "Absolute path name is $FULL_NAME."

1.13.3 stty -echo: Passwords

If the script requires the input of a “secret” string, the string typed from the keyboard should
not be displayed on the screen. To stop the display of the characters typed,

stty -echo

may be used.

To resume echoing of the characters,

stty echo

is used.

#!/bin/sh

echo -e "Please enter your passcode: \c"

stty -echo

read PASSCODE

stty echo

echo "The passcode was not seen when typed."

1.13.4 cut, awk: Cut Selected Fields

cut and awk may both be used to select a specific field from the output of a command. A
typical application would be to create a list of currently logged-in users:

26 CHAPTER 1. PROGRAMMING THE SHELL

#!/bin/sh

#

using cut:

USERS=‘who | cut -f1 -d" "‘

echo "Users on the system are: $USERS."

using awk:

USERS=‘who | awk ’{print $1}’‘

echo "Users on the system are: $USERS."

In the first example, cut takes its input from the who command. -f1 specifies that the
first field is to be cut out from each line, and -d" " specifies that the field delimiter is a
space.

In the second example, awk takes its input the same way cut did, then prints the first
field (space is the default field delimiter for awk).

In general, cut is a much simpler command to use. awk is a full language; scripts can be
written using awk as the language instead of the shell script.

1.14 Exercises

1. I have an IBM REXX emulator on my UNIX machine. I also have a set of REXX files
I want to run. What should I do to those files in order to get them to run simply by
typing their file name? Assume the REXX emulator is /usr/local/bin/rexx.

2. Write a script that would display the time when run.

3. Write a script that would wait 5 seconds, then display the time, but 5 seconds late.
Hint: use the ”sleep” command.

4. Write a script that will take a person’s name as a parameter to the program name.
The script should greet that person, as

Good Day name entered, How are you today?

5. Write a script that will prompt the user for a name. That same name will then be
displayed in the same format as the previous exercise.

6. Write a script that will return the number of parameters on the command line.

1.14. EXERCISES 27

7. Write a series of scripts that will count the number of parameters on the command
line, first using the for statement, then the while and finally the until statement.
(Three scripts).

8. Write a script that will echo the third parameter, but only if it is present.

9. Given a file of numbers (one per line), write a script that will find the lowest and
highest number.

10. Write a script that would recognize if a word entered from the keyboard started with
an upper or lower case character or a digit. Use the ”case” statement.

The script would then output the word, followed by ”upper case”, ”lower case”, ”digit”,
or ”not upper, lower, or digit”.

11. Write a script that would first verify if file ”myfile” exists. If if does not, create it,
then ask the user for confirmation to erase it...

12. Write a Bourne shell script to automatically compile your Fortran or C programs (prog.f
or prog.c). The script should, if a name is not provided in the command line, prompt
the user to input the program to be compiled. Hint: use awk -F. ’print $1’.

13. Write a program that will calculate the amount of disk space your directory is using
on the system.

Hint: the program could use both the du and awk commands.

14. Write a program that will list the files you have in the current directory, followed by
the directories. The output should have the form:

Files:

filenames

Directories:

directories

15. Write a program to verify how many users are logged on to the system.

16. Write a program that will take an undetermined list of parameters, and reverse them.

28 CHAPTER 1. PROGRAMMING THE SHELL

17. Write a script that will accept any number of parameters. The program should display
whether an odd or an even number of parameters was given.

18. Write a script asking the user to input some numbers. The script should stop asking
for numbers when the number 0 is entered. The output should look like:

user: logon_name

Lowest number entered:

Highest number entered:

Difference between the two:

Product of the two:

19. Write a shell script that uses a temporary file to store the user name and the time
the script starts. The script should run for approximately 30 seconds (use the ”sleep”
command). Run another occurrence of that same script, ensuring the temporary file
used really has a unique name.

The script should verify that the temporary file does not exist prior to attempting to
use it.

20. Write a script that changes the command line parameters to your own login id.

21. Write a script that ignores any ”CTRL-C”. In fact, when ”CTRL-C” is entered, it
should display a message, then continue to run.

22. Write a script that reads a ”password” from a user (it will not show when typed, but
will get displayed after the carriage return is entered).

Chapter 2

Solutions to Exercises

This section represents possible solutions to the exercises in the course material.

2.1 Programming the Shells

The scripts shown below are all Bourne shell based. C shell scripts could also be written to
solve these problems.

Most of the scripts lack error-checking mechanisms such as verifying the number of ar-
guments, checking if a file exists before creating it, etc. The addition of such tests is good
programming practice; their inclusion is left to the reader as further exercises.

1. Once the REXX script is written, the execution mode should be set (chmod +x

script.rexx). NOTE, the first line of the script must look like

#!/usr/local/bin/rexx

so that the rexx shell is invoked to run the commands.

2. This exercise makes use of the grave accents (also called back quotes) to get the output
from the date command.

#!/bin/sh

echo "The current date is ‘date‘."

exit 0

29

30 CHAPTER 2. SOLUTIONS TO EXERCISES

3. The output from the date command is stored in a variable and redisplayed 5 seconds
later.

#!/bin/sh

DATE=‘date‘

echo "Current: $DATE."

sleep 5

echo "5 seconds late: $DATE."

exit 0

4. The argument on the program line is referred to as $1.

#!/bin/sh

if test $# -eq 0

then

echo "No name on command line."

exit 1

fi

echo "Good Day $1, How are you today?"

exit 0

5. The only difference with the previous exercise is the way the name is read by the script:

#!/bin/sh

echo "Enter you name here: "; read NAME

echo "Good Day $NAME, How are you today?"

exit 0

6. This script is really a “one-liner”:

2.1. PROGRAMMING THE SHELLS 31

#!/bin/sh

echo "There were $# arguments on the command line."

exit 0

7. This solution is:

#!/bin/sh

NUM=0

for i in $*

do

NUM=‘expr $NUM + 1‘

done

echo "There were $NUM arguments."

exit 0

#!/bin/sh

NUM=0

while test $# -gt 0

do

NUM=‘expr $NUM + 1‘

shift

done

echo "There were $NUM arguments."

exit 0

#!/bin/sh

NUM=0

until test $# -eq 0

do

32 CHAPTER 2. SOLUTIONS TO EXERCISES

NUM=‘expr $NUM + 1‘

shift

done

echo "There were $NUM arguments."

exit 0

8. First, one should verify that the third parameter actually exists:

#!/bin/sh

if test $# -ge 3

then

echo "The third argument is $3."

else

echo "There were only $# parameters."

echo "Program stopped."

fi

exit 0

9. One such script could be

#!/bin/sh

script to print lowest and highest number from a file.

#

if test $# -eq 0

then

echo usage: minmax filename

exit 1

fi

sort -n numbers > sorted.numbers

read SMALLEST < sorted.numbers

LARGEST=‘tail -1 sorted.numbers‘

2.1. PROGRAMMING THE SHELLS 33

rm sorted.numbers

echo " "

echo "The smallest number is $SMALLEST."

echo "The largest number is $LARGEST."

echo " "

exit 0

This script should contain code to check that sorted.numbers does not already exist.
It is left to the reader to add that code.

10. This makes use of pattern matching within the case statement.

#!/bin/sh

echo -e "Enter a word or number: \c"; read ANS

case $ANS in

[a-z]*) echo "lower case"

;;

[A-Z]*) echo "upper case"

;;

[0-9]*) echo "number."

;;

*) echo "not upper, lower, or number."

esac

exit 0

11. This uses an infinite while loop and the break command.

#!/bin/sh

FILE="myfile"

if test -f $FILE

then

echo "File already exist."

else

echo "creating myfile."

34 CHAPTER 2. SOLUTIONS TO EXERCISES

touch myfile

while :

do

echo -e "would you like to erase it? \c"

read ANS

case $ANS in

[yY] | [yY][eE][sS]) echo "Fine, then we’ll erase it."

rm myfile

break

;;

[nN] | [nN][oO]) echo "OK we will keep it, then."

break

;;

*) echo "You must enter a yes or no!"

esac

done

fi

exit 0

12. This is a toughy, especially if you have no idea what awk is. The following script will
take either a FORTRAN or a C program, and compile it using the default flags:

#!/bin/sh

if test $# -eq 0

then

echo " "

echo "Enter program to be compiled."

read PROGRAM

else

PROGRAM=$1

fi

NAME=‘echo $PROGRAM | awk -F. ’{print $1}’‘

make $NAME

2.1. PROGRAMMING THE SHELLS 35

13. This script uses du and awk to find the solution:

#!/bin/sh

CURRENT_DIR=‘echo $cwd‘

cd

cd ..

LAST_LINE=‘du $user | tail -1‘

SPACE=‘echo $LAST_LINE | awk ’{print $1}’‘

echo "My home directory is using $SPACE kilobytes."

cd $CURRENT_DIR

14. This script makes use of the creation of a few temporary files, and of the read statement
on one of those files. Note where the input redirection sign is placed: this ensures that
the file is kept open during the read process.

#!/bin/sh

ls > /tmp/listing

SIZE=‘cat /tmp/listing | wc -l‘

NUM=0

while [$NUM -lt $SIZE]

do

read FILE

if [-f $FILE]

then

echo $FILE >> files

elif [-d $FILE]

then

echo $FILE >> dirs

fi

NUM=‘expr $NUM + 1‘

36 CHAPTER 2. SOLUTIONS TO EXERCISES

done < /tmp/listing

echo "Files:"

echo "-----"

cat files

echo " "

echo "Directories:"

echo "-----------"

cat dirs

rm files dirs /tmp/listing

Note that no test strings appear in this program. Instead, open and closed square
brackets were used ([]). These can be used interchangeably instead of the test

command.

15. This is simple:

#!/bin/sh

echo "There are ‘who | wc -l‘ users in the system."

16. Again, this is fairly straightforward:

#!/bin/sh

if [$# -eq 0]

then

echo There were no arguments on the command line.

exit

fi

ARGS=""

while [! $# -eq 0]

do

2.1. PROGRAMMING THE SHELLS 37

ARGS="$1 $ARGS"

shift

done

echo "The reversed arguments are $ARGS"

17. This script makes use of the % operation:

#!/bin/sh

REM=‘expr $# % 2‘

if [$REM -eq 0]

then

echo "There were an even number of arguments."

else

echo "There were an odd number of arguments."

fi

exit 0

18. Again, this script makes use of the expr command.

#!/bin/sh

HIGHEST=0

LOWEST=99999999

echo "Please input numbers: "

read NUMBER

while [$NUMBER -ne 0]

do

if test $NUMBER -gt $HIGHEST

then

HIGHEST=$NUMBER

fi

if test $NUMBER -lt $LOWEST

then

38 CHAPTER 2. SOLUTIONS TO EXERCISES

LOWEST=$NUMBER

fi

read NUMBER

done

echo " "

echo "user: $USER"

echo " "

if [$HIGHEST -eq 0 -a $LOWEST -eq 99999999]

then

echo "No numbers were entered."

else

echo "Lowest number entered: $LOWEST"

echo "Highest number entered: $HIGHEST"

DIFF=‘expr $HIGHEST - $LOWEST‘

echo "Difference between the two: $DIFF"

PROD=‘expr $LOWEST "*" $HIGHEST‘

echo "Product of the two: $PROD"

echo " "

fi

19. This could be useful for unique temporary file names.

#!/bin/sh

TMPFILE="/tmp/an16.$$"

if test -f $TMPFILE

then

echo "Temporary file exists!!!"

exit

fi

date > $TMPFILE

echo $USER >> $TMPFILE

echo -e "\ncontent of $TMPFILE is:"

echo "------"

cat $TMPFILE

2.1. PROGRAMMING THE SHELLS 39

sleep 30

rm $TMPFILE

exit 0

Run the script in the background, then start another. Their temporary file names will
not conflict.

20. To change command line parameters:

#!/bin/sh

echo "Current parameters are: $*"

set $USER

echo "New Current parameters are: $*"

exit 0

21. This uses the trap command.

#!/bin/sh

trap ’echo "Ignoring Control-C..."’ 2

for i in 1 2 3 4 5 6 7 8

do

sleep 2

done

echo "program now terminated normally..."

exit 0

22. Useful to hide passwords.

#!/bin/sh

echo -e "\nEnter a secret word: \c"

stty -echo

40 CHAPTER 2. SOLUTIONS TO EXERCISES

read SECRET

stty echo

echo -e "\nYour secret word is $SECRET."

exit 0

Chapter 3

Bibliography

41

42 CHAPTER 3. BIBLIOGRAPHY

Bibliography

[1] Stephen R. Bourne. The UNIX System V environment. Addison-Wesley Publishing
Company. Don Mills, Ontario. 1987.

[2] D. Dougherty, R. Koman, and P. Ferguson. The Mosaic Handbook for the X Window
System. O’Reilly & Associates, Inc. Sebastopol, California. 1994.

[3] E. Foxley. UNIX for Super-Users. Addison-Wesley Publishing Company. Don Mills,
Ontario. 1985.

[4] Æleen Frisch. Essential System Administration. O’Reilly & Associates, Inc. Sebastopol,
California. 1992.

[5] Ed Krol. The Whole INTERNET User’s Guide & Catalogue. O’Reilly & Associates,
Inc. Sebastopol, California. 1994.

[6] Jerry Peek, Tim O’Reilly, and Mike Loukides. UNIX Power Tools. O’Reilly & Asso-
ciates, Inc. Sebastopol, California. 1993.

[7] H. McGilton and R. Morgan. Introducing the UNIX SYSTEM. McGraw-Hill Software
Series for Computer Professionals. Toronto. 1983.

[8] R. Thomas, and R. Farrow. UNIX Administration Guide for System V. Prentice Hall.
Englewood Cliffs, New Jersey. 1989.

[9] Silicon Graphics Inc. IRIS-4D User’s Guide, man pages.

[10] Sun Microsystems. SunOS 4.0, 4.1 Reference Manuals.

[11] SuSE Linux LTD. SuSE Linux 7.3 Reference Manual.

43

44 BIBLIOGRAPHY

[12] UNIX International. The UNIX Operating System: A Commercial Success Story. Nov
1, 1989. Parsippany, NJ.

[13] http://www.canarie.ca; November 1997 version.

