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Abstract—In this paper, the asymptotic capacity and delay
performance of social-proximity urban vehicular networks with
inhomogeneous vehicle density are analyzed. Specifically, we
investigate the case of N vehicles in a grid-like street layout
while the number of road segments increases linearly with the
population of vehicles N . Each vehicle moves in a localized
mobility region centered at a fixed social spot and communicates
to a destination vehicle in the same mobility region via a unicast
flow. With a variant of the two-hop relay scheme applied,
we show that social-proximity urban networks are scalable: a
constant average per-vehicle throughput can be achieved with
high probability. Furthermore, although the throughput and
delay of a unicast flow may degrade in a high density area, almost
constant per-vehicle throughput Ω( 1

log (N)
) and almost constant

delay O(log2 (N)) (except for the polylogarithmic factor) are
still achievable with high probability. By identifying the key
impact factors of performance mathematically, our results might
provide insight on the design and deployment of future vehicular
networks.

I. INTRODUCTION

Emerging vehicular ad hoc networks (VANETs) are vehicle-
centric large-scale communication networks; by equipping ve-
hicles with on-board wireless communication facilities, com-
munications among vehicles in proximity can be enabled.
With VANET, a variety of applications relating to the safety
(e.g., collision detection and lane changing warning) and
infotainment [1]–[3] (e.g., file and other valuable information
sharing) can be provided to drivers and passengers on the road.
This not only makes the transportation system safer and more
efficient, but also revolutionizes users’ in-vehicle experience.

Under the umbrella of mobile ad hoc networks, VANETs
present unique characteristics in terms of mobility, density
and applications. More specifically, in VANETs, vehicles have
map-restricted and localized mobility with specific social
features rather than moving everywhere in the entire network:
a vehicle typically moves only within a bounded region
which relates to the social life of the driver. For instance, a
vehicle may usually move within a small area close to the
driver’s home or the work place. This mobility feature is
also reported in [4] based on the analysis of the real-world
mobility trace of taxis in the city of Warsaw. It is observed
that the mobility of taxis is typically around certain social
spots and the density of vehicles within the proximity area
of social spots follows the empirical heavy-tailed distribution.
Moreover, VANETs show high spatial variations of vehicle
density [1] and, more importantly, are mainly involved in the

proximity-related applications, such as safety applications and
localized file sharing. All above observations make it neither
practical nor necessary to maintain a long-lasting unicast
communication flow over a long-distance. With the presence of
unique features aforementioned, the fundamental performance
in communication delay and capacity of VANETs has not been
studied in existing literature, which motivates us to study the
following three issues:

i. what is the performance in communication delay and
capacity of the urban VANET with social-proximity
characteristics?

ii. is social-proximity VANET scalable as its network size
continually grows in the city?

iii. how to operate this network to attain improved network
performance in terms of capacity and delay?

In this paper, we develop theoretical analysis on the through-
put capacity and delay performance of the social-proximity
urban VANET. Doing so, we model urban area as a scalable
grid in which the number of road segments increases linearly
with the number of vehicles in the network. With localized na-
ture of vehicle’s mobility, we apply restricted vehicle mobility
model surrounding a fixed social spot. In addition, we target to
support social-proximity applications using this network, such
that unicast flows are established between vehicles in which
both the source and the destination of each flow are within the
proximity of location around certain social spot. With a variant
of the two-hop relay scheme [5] deployed, we show that
network scales with an average constant per-vehicle through-
put with high probability (w.h.p.); even in some area with
extremely high vehicle density, it is possible to achieve almost
constant throughput and delay (except for a polylogarithmic
factor). Finally we obtain delay/throught = O(log3 (N)) in
this social-proximity urban vehicular network, indicating that
social-proximity urban vehicular networks are scalable.

The remainder of this paper is organized as follows: Section
II surveys the related works. In Section III, we introduce the
network models and the notations used. Section IV analyzes
the asymptotic throughput capacity and average packet delay
with the proposed two-hop relay scheme. Section V concludes
the paper.

II. RELATED WORK

The throughput capacity of wireless networks was initially
investigated by Gupta and Kumar in [6], where it has been
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shown that the per-node throughput decays at least as 1/
√
N

in the presence of N nodes in the network. Since then, the
study of capacity scaling in different networking scenarios has
received extensive attention from academia [7]–[10]. Gross-
glauser and Tse [11] first studied the effect of mobility on
throughput capacity and have shown that due to the mobility,
the per-node throughput of the mobile ad hoc network could
remain constant at the cost of enlarged delay. Motivated by
this result, substantial research has been conducted, such as
[5], [12]–[14], to investigate tradeoffs between the delay and
throughput for mobile ad hoc networks. El Gamal et al. [12]
studied the throughput and delay under random walk model.
With a two-hop relay scheme similar to that proposed in [11],
they have shown that a per-node throughput of Θ(1)1 can
be achieved with a delay of Θ(N logN). In [5] Neely and
Modiano studied the throughput capacity and delay of a cell-
partitioned ad hoc network under the i.i.d. mobility model.
They found that a general delay-throughput tradeoff can be
established: the ratio of delay and throughput is at least O(N)
under different scheduling policies applied with or without
packet redundancy.

By noticing that nodes often spend most of the time in
proximity of a few preferred places within a localized area,
some researchers have been motivated to study the throughput
and delay under the restricted node mobility. Li et al. [15]
investigated the impact of a restricted mobility model on
throughput and delay of a cell-partitioned network. They
found that smooth throughput-delay tradeoffs in mobile ad
hoc networks can be obtained by controlling the mobility
pattern of nodes. Garetto and Leonardi [16] showed that the
delay-throughput tradeoffs can be improved by restricting the
node mobility. They considered a restricted mobility that the
node moves around a fixed home-point according to a Markov
process, while the stationary distribution of the node location
decays as a power law of exponent δ with the distance from
the home-point. They showed that it is possible to exploit node
heterogeneity under a restricted mobility model to achieve
Θ(1/ log2 (N)) throughput capacity and O(log4 (N)) delay
by using a sophisticated bisection routing scheme. However,
the capacity and delay are still unclear as the network is mainly
used to support proximity-related applications. Moreover, ex-
cept those in [16], nodes are typically assumed to be uniformly
distributed in the network in existing literatures. However, in
the urban area, the densities of vehicles in different regions
are highly diversified. Therefore, it is desirable to consider the
network with inhomogeneous node density. In [10] Alfano et
al. study the capacity scaling in a network with heterogeneous
node densities. However, they only consider the network with
stationary nodes.

Although VANETs have received a lot of attentions, the
research on the fundamental performance (asymptotic through-

1We use standard order notations in the paper: given nonnegative functions
f1(n) and f2(n), f1(n) = O(f2(n)) means f1(n) is asymptotically upper
bounded by f2(n); f1(n) = Ω(f2(n)) means f1(n) is asymptotically lower
bounded by f2(n); and f1(n) = Θ(f2(n)) means f1(n) is asymptotically
tight bounded by f2(n).

put capacity and delay) of VANETs is still limited. The impact
of road geometry on the capacity of the network is investigated
in [17] and [18]. In [19] Wang et al. consider a general multi-
cast capacity scaling for an arterial road system. Unlike these
works that have not addressed the delay issues, it is one of
the key focuses of this paper to study the delay performance.

III. SYSTEM MODEL

A. Network Geometry

We consider a square urban area with a grid-like street
layout, like Manhattan area or the downtown area of a city.
As shown in Fig. 1, the network geometry comprises of a
set of M parallel roads intersected with another set of M
parallel roads. Each line segment in Fig. 1 represents a road
segment with bi-directional vehicle traffics. For the simplicity
of analysis, the overall area considered is normalized to one
unit, i.e., each side of the grid is of unit one in length.

M = 2 M = 3 1/(M-1)
Square

Road segment

The same 

road segment

1

Fig. 1. A grid-like street layout.

The grid holds wrap-around conditions (i.e., the torus) to
eliminate the border effects. Let C denote the number of
squares in the grid. The total number of road segments (the
road section between any two neighboring intersections) is
therefore G = 2C = 2(M − 1)2. We define the network
density d = N

G = N
2(M−1)2 , where N is the total number of

vehicles in the network. The network density d is kept constant
such that the number of road segments G increases linearly
with the total number of vehicles N . Note that d represents
the average vehicle density in the grid. As each vehicle moves
following the mobility model with social features, the spatial
distribution of vehicles is inhomogeneous, as an example
shown in Fig. 3(b).

Remark: M and d characterize the scale of the grid. A
grid with a very large M and a relatively large d can model
metropolitan areas like New York City; whereas a small town
would have relatively small values of M and d. Therefore,
from a macroscopic view, the grid-like geometry with different
values of M and d can model urban scenarios of different
scales.

B. Mobility Model

Markovian Mobility Pattern: The vehicle mobility is mod-
eled by a discrete time Markovian process as follows. We
consider a discrete time system where time is slotted with
equal duration. The road segments are indexed from 1 to G
and vehicle nodes are indexed from 1 to N . The movement
of vehicles are independent to each other in the grid. The
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Fig. 2. Restricted mobility with different tiers for a given vehicle.

mobility of a vehicle k follows a discrete time Markovian
process, denoted by C(k), k ∈ {1, 2, . . . , N}, which is unique-
ly represented by a one-dimensional G-state ergodic Markov
Chain. Ct(k) = i if vehicle k appears on road segment i,
i ∈ {1, 2, . . . , G}, at time slot t, t ∈ {1, 2, . . . , T}. Let Pij(k)
denote the transition probability that vehicle k moves from
road segment i to the next road segment j, j ∈ {1, 2, . . . , G}.
Let P(k) = {Pij(k)}G×G denote the transition probability
matrix of C(k); the element Pij(k) in P(k) is non-zero only
if j is a neighboring road segment of i in Fig. 1. Following
this Markovian model, the vehicle can generate a mobility
pattern in the network. The steady-state location distribution
of vehicle k is π(k) = {πi(k)}1×G, where πi(k) denotes
the long-term proportion of time that vehicle k stays on
road segment i. In [20], it is shown that the capacity region
only depends on how the node location distributes in the
steady state. In [21], it is shown that the Markovian mobility
model converges to its steady-state location distribution at an
exponential rate. Therefore, in what follows we focus on the
steady-state location distribution of the vehicles.

Restricted Mobility Region with Social Spot: We apply the
socialized restricted mobility model to individual vehicles.
Specifically, as shown in Fig. 2, the mobility region of each
vehicle is composed of multiple co-centered tiers which are
formed as follows. Each vehicle uniformly chooses one square
out of the C squares in the grid as Tier(1) of its mobility
region. It comprises of four road segments and specifies the
social spot of the vehicle’s mobility. The adjacent squares
surrounding Tier(1) form Tier(2), and so forth. Let Tier(A)
denote the outermost tier of the mobility region, where A is
a constant scaler smaller than or equal to ⌊M/2⌋. It could
be easily derived that Tier(α), α ∈ {1, 2, . . . ,A}, contains
16α − 12 road segments. In this paper, the mobility of each
vehicle is constrained in A tiers with a total number of∑A

α=1 16α− 12 = 4A(2A− 1) road segments.
In a randomly selected Tier(α), α ∈ {1, 2, . . . ,A}, the

vehicle has equal steady-state location probability on each road
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(a) Uniform distribution
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(b) Distribution with social spots

Fig. 3. Examples of homogeneous (a) and inhomogeneous (b) distributions
of vehicles, in the case of N = 2000, M = 21 and A = 10.

segment. Let πα denote the steady-state location probability of
each vehicle on the road segments of Tier(α). From Tier(1)
to Tier(A), the steady-state location probability of vehicles
is modeled to exponentially decay as a power law function
with exponent γ > 0. As such, we have πα = α−γπ1

which indicates that a vehicle is more likely to stay in the
network near its social spot. The same model has been used
in [16] and its accuracy is validated in [4] through real-world
measurements. As the summation of steady-state probability
on road segments equals to 1, i.e.,

A∑
α=1

(16α− 12)πα =

A∑
α=1

(16α− 12)α−γπ1 = 1, (1)

we have,
π1 =

1∑A
α=1(16α− 12)α−γ

. (2)

In summary, the mobility of each vehicle is uniquely
characterized by its social spot, which is uniformly and
independently selected over the C squares in the grid. The
squares are indexed from 1 to C. Let H = (H1,H2, . . . , HN )
denote the set of locations of the vehicles’ social spots, with
each element Hk, Hk ∈ {1, 2, . . . , C}, denoting the location
of vehicle k’s social spot. The set H is fixed once the
network is defined. Using the mobility model discussed above,
the network presents inhomogeneous vehicle densities in the
network. Fig. 3(b) shows an example of the vehicle distribution
with social spots.

C. Traffic Model

We consider that N unicast flows exist concurrently in the
network. Each vehicle is exactly the source of one unicast
flow and the destination of another unicast flow. We consider
the case in which the source and destination vehicles of each
unicast flow have the same social spot. This is motivated by the
dominant proximity applications in vehicular communications.
As such, the source and destination vehicles of each unicast
flow are spatially close to each other. Without the loss of
generality, N is considered to be even. We sort the index
of vehicles such that vehicle k communicates with k + 1,
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k ∈ {1, 3, 5, . . . , N − 1}, and each communication pair
randomly chooses a square in the grid as their social spot
following the uniform distribution. The packet arrives in each
unicast flow at an average rate η.

D. Communication Model
We assume that a pair of vehicles can communicate only

when they are on the same road segment at the same time slot.
With all vehicles using the single-channel transceiver, at each
time slot, at most one transmission can occur on each road
segment. The success or failure of a transmission is determined
by the protocol model defined in [6] as follows. Let r = 1

M−1
denote the communication range of each vehicle which covers
the entire road segment. The transmission from vehicle i to
vehicle j can be successful during time slot t if and only if the
following condition holds: dkj(t) ≥ (1+∆)r, for every other
vehicle k transmitting simultaneously, where dkj(t) denotes
the Euclidean distance between vehicle k and j at time slot t,
and ∆ > 0 is a guard factor.

E. Definitions of Throughput and Delay
Let Lk(T ) be the number of packets received by the

destination of flow k, k ∈ {1, 2, . . . , N}, up to time T ; let
Dk(T ) be the integrated delay of packets received by the
destination of flow k up to time T . An asymptotic per-vehicle
throughput λ(N) and average delay D(N) are said feasible if
there exist a scheduling policy and an N0 such that for any
N > N0, we have,

lim
T→∞

Pr

(
Lk(T )

T
≥ λ(N), ∀k

)
= 1, (3)

lim
T→∞

Pr

(
Dk(T )

Lk(T )
≤ D(N),∀k

)
= 1. (4)

Specifically, an average per-vehicle throughput λ̃(N) is said
feasible if there exist a scheduling policy and an N0, such that
for any N > N0, the following holds

lim
T→∞

Pr

(∑N
k=1 Lk(T )

NT
≥ λ̃(N)

)
= 1. (5)

IV. ASYMPTOTIC CAPACITY AND DELAY ANALYSIS

In this section, we first propose a two-hop relay scheme for
the packet delivery between the source and the destination.
After that, we derive the asymptotic capacity and delay of the
network with the two-hop relay scheme deployed.

A. Two-hop Relay Scheme
Let packets be delivered by using a two-hop relay scheme

X : a packet is either transmitted directly from the source to
the destination, or relayed through one intermediate vehicle
from the source to the destination. The packet transmission
consists of two phases:
X -I: Each road segment in the grid becomes ”active” in

every 1/pac time slots2.

2A road segment is active when vehicles on the road segment can trans-
mit successfully without any interference of transmissions from other road
segments. The value of pac is discussed later in the section.

rr)1(

Fig. 4. An example of non-interfering transmission group of road segments.

X -II: For each active road segment where there are at least
two vehicles,

1) if there exists at least one source-destination (S-D) pair on
the road segment, one pair is uniformly selected. If the source
has a buffering packet for transmission to the destination, it
transmits the packet and evicts it from the buffer after the
transmission; otherwise, the source stays idle.

2) if there is no any S-D pair on the road segment, a vehicle,
e.g., υA, is uniformly selected out of all vehicles on this road
segment, and in the meantime another vehicle, e.g. υB , is
independently and uniformly selected over the rest of vehicles.
The following two actions are conducted equally likely:

• Let υA be the transmitter and υB be the receiver,
and a source-to-relay transmission from υA to υB is
scheduled. If υA has a buffering packet to transmit, υA
transmits the packet to υB and evicts the packet from
the buffer; otherwise, υA remains idle.

• Let υB be the transmitter and υA be the receiver, and
a relay-to-destination transmission from υB to υA is
scheduled. If υB has a buffering packet destined for υA,
υB transmits the packet to υA and evicts the packet from
the buffer; otherwise, υB remains idle.

In what follows, we evaluate the value of pac. As shown in
Fig. 4, we partition the grid into equal-size sub-areas. Each
sub-area consists of β(β + 1) squares where β is an integer
number. The road segments highlighted in each sub-area in
Fig. 4 constitute one non-interfering transmission group, such
that simultaneous transmissions within one non-interfering
group do not interfere with each other. Totally, there are
2β(β+1) road segments within one sub-area, and collectively
2β(β + 1) non-interfering groups over the grid. With non-
interfering groups transmitting iteratively, each non-interfering
group becomes active every 1/pac = 2β(β+1) time slots. This
indicates that the vehicles on one specific road segment obtain
a transmission opportunity with probability pac at a randomly
selected time slot. With the grid scale of M , the minimum
distance between any two neighboring road segments of a non-
interfering group is β

M−1 . With the protocol model applied, we
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have

β/(M − 1) ≥ (1 + ∆)r.

With r = 1/(M − 1), we have

β ≥ 1 + ∆.

We set β = ⌈1 + ∆⌉, where ⌈x⌉ represents the smallest
integer greater than or equal to x. By substituting it into
1/[2β(β + 1)], we have

pac = 1/(2⌈1 + ∆⌉⌈2 + ∆⌉).

In what follows, we derive the throughput capacity and
average packet delay with the two-hop relay scheme X .

B. Bounds of per-vehicle throughput capacity

We first derive an upper bound of per-vehicle throughput
considering any possible stabilizing scheduling policies under
X -I. Let Xd(T ) denote the number of packets delivered in
the network through direct transmissions from the source to
destination, and Xr(T ) denote the number of packets delivered
to the destination via relaying, during the interval [0, T ].
Therefore, provided the arbitrary and fixed ϵ > 0, there must
exist arbitrarily large values of T such that the per-vehicle
throughput λ (N) satisfies

Xd(T ) +Xr(T )

T
≥ Nλ(N)− ϵ. (6)

Let Y (T ) denote the total number of transmission opportuni-
ties during the interval [0, T ]. From (6), we have

1

T
Y (T ) ≥ 1

T
Xd(T ) +

2

T
Xr(T )

≥ 1

T
Xd(T ) + 2

(
(Nλ(N)− ϵ)− 1

T
Xd(T )

)
.

The first inequality holds because the relayed packet reaches
to the destination through at least two hops. And therefore,

λ(N) ≤
1
T Y (T ) + 1

T Xd(T ) + 2ϵ

2N
,

i.e.,

λ(N) ≤ lim
T→∞

1
T Y (T ) + 1

T Xd(T )

2N
. (7)

Due to the interference of transmissions, the total number
of transmission opportunities is no larger than the maximum
number of concurrent transmissions during [0, T ]. By the
law of large numbers, we have limT→∞

1
T Y (T ) ≤ Gpac.

Similarly, we have limT→∞
1
T Xd(T ) ≤ Gpac, where the

equality holds when there is always an S-D transmission on
each road segment of a non-interference group during each
time slot. By plugging the inequalities into (7), we have

λ(N) ≤ Gpac +Gpac
2N

=
pac
d

=
1

2d⌈1 + ∆⌉⌈2 + ∆⌉
.

To derive a lower bound of per-vehicle throughput capacity,
we start from the following lemma.

Lemma 1: Let Ni denote the number of vehicles whose

mobility region contains road segment i. Ni at most scales
as O(log (N)) w.h.p.3.

The detailed proof is provided in Appendix.
Using the two-hop relay scheme X , a destination vehicle

can successfully receive a packet only when the following
three events occur at the same time: i) the road segment
in which the destination vehicle locates is active; ii) there
exists at least one other vehicle on that road segment; and
iii) the destination is selected as the receiver in either the di-
rect source-to-destination transmission or relay-to-destination
transmission. The first event occurs with probability pac.
The second event occurs with a non-zero probability. From
Lemma 1, the probability of occurrence of the third event is
at least Ω( 1

log(N) ) w.h.p.. Therefore, for a given S-D pair, the
throughput Ω( 1

log(N) ) is feasible.
By summarizing the above analysis, we have the following

theorem.
Theorem 1: For the social-proximity grid-like urban net-

works, with the two-hop relay scheme X , the per-vehicle
throughput λ(N) cannot be better than 1

2d⌈1+∆⌉⌈2+∆⌉ and
w.h.p., scales as Ω( 1

log(N) ).

C. Average per-vehicle throughput

In this part, we derive the lower bound of the average
per-vehicle throughput λ̃(N) based on the proposed two-hop
relay scheme. We need the following lemmas for the proof of
Theorem 2, which is stated later in the section.

Lemma 2: (Chebyshev’s Inequality) If X is a random vari-
able with mean E[X] and variance Var(X), then, for any value
k > 0,

Pr(| X − E[X] |≥ k) ≤ Var(X)

k2

Lemma 2 is well known and has been proved in the
literature. We make use of it to prove Lemma 3.

Lemma 3: At least (1−e−d)C squares will be a social spot
of at least one S-D pair w.h.p..

Proof: Let I be the number of squares that are not chosen
as a Tier(1) (indicating the social spot) of any vehicle’s
mobility region. We define Ii as an indicator variable for all
i ∈ {1, 2, . . . , C},

Ii =

{
1 if ∀ n ∈ {1, 2, . . . , N},Hn ̸= i

0 otherwise

and Pr(Ii = 1) = (1 − 1
C )

N
2 . Thus, the expectation and

variance of Ii are E[Ii] = (1 − 1
C )

N
2 and Var(Ii) = (1 −

1
C )

N
2 − (1− 1

C )N . Next we need to determine the variance of
I . For any i ̸= j, j ∈ {1, 2, . . . , C}, Cov(Ii, Ij) = E[IiIj ]−
E[Ii]E[Ij ], where Cov(Ii, Ij) is the covariance of variable Ii
and Ij . It is easy to get that E[IiIj ] = (1 − 2

C )
N
2 . Since

3As N → ∞, the probability approaches to 1.
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Cov(Ii, Ii) = Var(Ii), we have

Var(I) = Var
( C∑

i=1

Ii

)
=

C∑
i=1

C∑
j=1

Cov(Ii, Ij)

=

C∑
i=1

Cov(Ii, Ii) + 2

C∑
i=1

∑
j<i

Cov(Ii, Ij)

= C

[
(1− 1

C
)

N
2 − (1− 1

C
)N

]
+C(C − 1)

[
(1− 2

C
)

N
2 − (1− 1

C
)N

]
≤ C

[
(1− 1

C
)

N
2 − (1− 1

C
)N

]
.

The inequality holds because (1− 2
C )

N
2 − (1− 1

C )N = (1−
2
C )

N
2 −(1− 2

C+ 1
C2 )

N
2 ≤ 0. From Lemma 2, choosing k = ϵC,

we have

Pr(I − E[I] ≥ ϵC) ≤
C[(1− 1

C )
N
2 − (1− 1

C )N ]

ϵ2C2
.

Note that E[I] = C(1− 1
C )

N
2 . Thus,

Pr

(
I

C
≥ (ρ+ ϵ)

)
≤ ρ− ρ2

ϵ2
· 1

C
,

where ρ = (1− 1
C )

N
2 . Since N = 2dC, as N → ∞, ρ → e−d.

Therefore, limN→∞ Pr(I/C ≥ e−d) = 0, i.e., the probability
of I being over a constant proportion of C goes to zero as
N → ∞. Consequently, at least (1− e−d)C squares will be a
social spot of at least one S-D pair w.h.p..

Before introducing the next lemma, we define two sum-
mations of probabilities: p(N) = 1

G

∑G
i=1 Pr[ finding at

least two vehicles on road segment i during a time slot] and
q(N) = 1

G

∑G
i=1 Pr[ finding an S-D pair on road segment

i during a time slot]. Note that p(N) and q(N) are random
variables because of randomness in the locations of vehicles’
social spots, and all the probabilities above are associated with
the steady-state location distribution of each vehicle.

Lemma 4: p(N) and q(N) scale as Θ(1) w.h.p.. Specifical-
ly, w.h.p., (1−e−d)π2

1 ≤ lim inf
N→∞

p(N) ≤ 1 and (1−e−d)π2
1 ≤

lim inf
N→∞

q(N) ≤ 1.

Proof: Let pi denote the probability of finding at least two
vehicles on road segment i during a time slot. We can find that
road segment i belongs to the Tier(1) of 2 different mobility
regions (specified by different social spots), the Tier(2) of 10,
. . . , and the Tier(α) of 8α− 6, α ∈ {1, 2, . . . ,A}, as shown
in Fig. 5.

Let Nα
i denote the number of vehicles whose Tier(α)

of the mobility region contains road segment i. Thus, the
probability of finding no any vehicle on road segment i during
a time slot is

∏A
α=1(1 − πα)

Nα
i . And the probability of

finding exact one vehicle on road segment i during a time
slot is

∑A
α=1(N

α
i πα(1 − πα)

Nα
i −1

∏A
α′=1,̸=α(1 − πα′)N

α′
i ).

Therefore, we have,

i

k

Tier

k

Tier

k

j
Tier

j

Fig. 5. An example of one given road segment contained by different
vehicles’ mobility region.

pi = 1−
A∏

α=1

(1− πα)
Nα

i

−
A∑

α=1

(
Nα

i πα(1− πα)
Nα

i −1
A∏

α′=1, ̸=α

(1− πα′)N
α′
i

)
.

According to Lemma 3, the proportion of squares, each of
which is the social spot of at least one S-D pair, is at least
1 − e−d w.h.p.. Further, we can infer that w.h.p., there are at
least 2(1 − e−d)C road segments, each of which belongs to
a Tier(1) chosen as a social spot. Let S denote the set of
road segments that are not contained in the mobility region of
any vehicle. S̄ is the complementary set of S in {1, 2, . . . , G}.
Note that Nα

i is even and if Nα
i = 0, for all α, pi = 0. Recall

that p(N) = 1
G

∑G
i=1 pi. We have,

p(N) =
1

G

(∑
i∈S

pi +
∑
j∈S̄

pj

)

=
1

G

(
|S| · 0 +

∑
j∈S̄

pj

)
≥ 1

G

∑
j∈S̄

π2
1 ,

since for any j ∈ S̄, pj ≥ π2
1 . From Lemma 3, w.h.p.,

lim inf
N→∞

p(N) ≥ lim inf
N→∞

1

G
π2
1 · 2(1− e−d)C

= (1− e−d)π2
1 .

Let Mα
i denote the number of S-D pairs whose Tier(α) of

the mobility region contains road segment i. Thus,

q(N) =
1

G

G∑
i=1

qi =
1

G

G∑
i=1

(1−
A∏

α=1

(1− π2
α)

Mα
i ).

Similarly, we can prove that w.h.p.,

lim inf
N→∞

q(N) ≥ (1− e−d)π2
1 .
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r1

r2 r2

Fig. 6. A decoupling queue structure.

Theorem 2: For the social-proximity grid-like urban net-
works, with the two-hop relay scheme X , the aver-
age per-vehicle throughput capacity λ̃(N) scales as Θ(1)
w.h.p.. Specifically, w.h.p., lim inf

N→∞
λ̃(N) ≥ 1

2d⌈1+∆⌉⌈2+∆⌉ ·
1−e−d

(
∑A

α=1(16α−12)α−γ)2
.

Proof: Based on the two-hop relay scheme X , we are
able to use a decoupling queue structure, similar to that in
[5], to model each unicast flow, as shown in Fig. 6. Without
loss of generality, we consider that the packet arrival rate η
follows the Bernoulli process; that is to say, in each unicast
flow, one packet arrives with the probability η at the current
slot, and with the rest probability there is no packet arrival.
Therefore, the source vehicle, e.g., vk, can be represented as
a Bernoulli/Bernoulli queue with packet arrival rate ηk and
service rate ζk. The buffering packet in the source will be
transmitted (served) to either its destination directly or one
of the relays within the mobility region of the source. The
transmission opportunity arises with probability ζk.

Let rk1 (N) denote the long term average rate at which a
direct transmission to the destination is scheduled to source
vk, and rk2 (N) denote the long term average rate at which
a source-to-relay transmission is scheduled to source vk.
The transmission opportunity arises at the rate ζk(N) =

rk1 (N) + rk2 (N). As per the definition, λ̃(N) =
∑N

k=1 ζk(N)

N .
Since the two-hop relay scheme X schedules a source-to-relay
transmission and a relay-to-destination transmission equally
likely, the rate into the relays is equal to the rate out of the
relays. During each time slot, the total number of transmission
opportunities over the network is

∑N
k=1(r

k
1 (N) + 2rk2 (N)).

Given that the transmission opportunity arises on a road
segment when it is active and at least two vehicles are on
it, then we have,

Gpacp(N) =
N∑

k=1

(rk1 (N) + 2rk2 (N)). (8)

Since the two-hop relay scheme X schedules the source-to-
destination transmission whenever possible and with proba-
bility pacq(N) there is a source-to-destination transmission
occurs on a given road segment, then we have,

Gpacq(N) =

N∑
k=1

rk1 (N). (9)

From (8) and (9), we obtain
∑N

k=1 r
k
2 (N) = Gpac(p(N)−q(N))

2
and therefore

λ̃(N) =

∑N
k=1(r

k
1 (N) + rk2 (N))

N
=

pac(p(N) + q(N))

2d
.

According to Lemma 4, w.h.p., we have,

lim inf
N→∞

λ̃(N) ≥ pac(1− e−d)π2
1

d
(10)

which is the lower bound on the average per-vehicle through-
put capacity.

Remark: The average per-vehicle throughput is analyzed as
a global metric to evaluate the performance of the network
with inhomogeneous vehicle density. From Theorem 2, we
can infer that the constant per-vehicle throughput is feasible
w.h.p. for Nf S-D pairs, where Nf = Θ(N) ≤ N

2 . Because
of vehicles’ mobility with social features and the randomness
of the locations of vehicle’s social spots, the network shows
spatial variations of vehicle density. In some hot area, i.e., the
agglomeration of a large number of vehicles’ social spots, the
throughput of the S-D pair in that area may drop to Θ( 1

log (N) ).

D. Average packet delay

We first analyze the average packet delay of a given unicast
flow. The packet delay is accounted starting from the time
slot when the packet arrives at the source until the time slot
when the packet is delivered to its destination (including the
queueing delay at the source or relay vehicle).

Recall that the source vk can be represented as a Bernoul-
li/Bernoulli queue with arrival rate ηk and service rate ζk. The
expected number of packets buffered at the source is

Ek[ns] =
ηk(1− ηk)

ζk − ηk
. (11)

It is shown in [5] that packets depart from the source at the
rate of ηk when the buffer of source is stable. For a packet
sent out from the source, it is delivered to a relay vehicle,
e.g., vi, with the probability rk2

ζk
·Pki, where Pki is the contact

probability between vk and vi. Therefore, the packet arrival
rate to the relay vi is ηki =

ηkr
k
2

ζk
Pki. The packets depart to

the destination from the relay vi at the rate ζki = rk2Pki. This
is because that the source and the destination have the equal
contact probability with the relay vehicles, and moreover the
packet injection rate from the source to the relays equals to
that from the relays to the destination, as shown in Fig. 6. With
the packet arrivals and departures at the relay vi following the
Bernoulli process with mean rates ηki and ζki, respectively,
the average number of packets hold by vi is

Eki[nr] =
ηki

ζki − ηki
=

ηk
ζk − ηk

. (12)

Note that (12) holds for every relay. From Little’s law, the
average packet delay of the flow from vk is

Dk(N) =
Ek[ns] +Rk(N)Eki[nr]

ηk
=

Rk(N) + 1− ηk
ζk − ηk

,
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where Rk(N) is the total number of relay vehicles which have
an overlapped mobility region with source vk. As indicated by
13, the average packet delay is dependent of vehicle density
in the proximity region of a unicast flow.

We proceed to derive the lower bound and upper bound of
the average packet delay of the entire network. We neglect the
queueing delay at the source vehicle in the calculation, as we
are only interested in the delay caused by vehicles’ mobility.

Theorem 3: For the social-proximity grid-like urban net-
works, with the two-hop relay scheme X , the average packet
delay D(N) cannot be less than 1∑A

α=1(16α−12)α−2γπ2
1

and

w.h.p., scales as O(log2 (N)).
Proof: The minimal delay of a flow is achieved when

the source delivers the flow packets to its destination with
the highest transmission priority. Moreover, the direct packet
transmission from the source to the destination has lower
average delay compared to the relay transmissions, with the
condition that the contact probability between the source
and one of its relay vehicles is no larger than the contact
probability between the source and its destination. The source
encounters the destination on a same road segment with the
probability

PSD =
A∑

α=1

(16α− 12)α−2γπ2
1 .

Therefore, the minimum packet delay is geometric distributed
with mean 1/PSD.

Next we prove the upper bound on the average packet delay.
Let υA and υB be a given pair of vehicles whose mobility
regions are overlapped. υA intends to transmit a packet to υB .
The transmission between υA and υB can be scheduled during
a time slot only when the following three events occur at the
same time: i) υA and υB are located on a same road segment
during the time slot; ii) that road segment is active in the slot;
and iii) υA and υB are both selected for a transmission from
υA to υB . These three events occur with probability ϕ1, pac
and ϕ2 respectively. Thus, the distribution of the packet delay
between υA and υB can be treated as geometric with mean

1

ϕ1ϕ2pac
= O(log2 (N)),

where ϕ1 is deterministic and none-zero and ϕ2 is Ω( 1
log2 (N)

)
w.h.p. according to Lemma 1. Hence, the average packet delay
D(N) scales as O(log2 (N)) w.h.p..

E. Discussion
1) With or without packet redundancy: With the proposed

two-hop relay scheme applied, a constant average per-vehicle
throughput is achievable w.h.p.. Note that the two-hop relay
scheme does not use any packet redundancy, i.e., there is only
one copy of each packet in the network. In fact, the same
bounds on asymptotic throughput capacity and delay can be
derived even when direct transmissions are performed between
the source and destination without the assistance of any relays.
This is because that the source and the destination have

non-zero contact probability and the number of concurrent
transmissions scales as Θ(N) w.h.p.. Therefore, we are able
to use a two-hop relay scheme with packet redundancy to
improve the delay performance, however, without degrading
throughput in the order sense.

A better delay performance can be achieved with an im-
proved scheduling policy. Note that the minimum delay is
achieved by the direct transmission with highest schedule
priority, since the source is more likely to encounter the
destination than the relays (except that the relay has the same
social spot as the S-D pair). In this case, the relay may not
be helpful to reduce the delay: it can delivery the packet
from the source to the destination, but may incur a longer
delay than the direct transmission. It is possible to conduct
a source-guaranteed redundant scheduling: the source keeps
a copy of each packet delivered to the relays and confirms
the receipt of such packet when the source encounters the
destination. If such packet has not yet been delivered to
the destination, the source can transmit the packet directly.
It can be envisioned that in social-proximity VANETs the
throughput-sensitive applications can be supported by the two-
hop relay scheme without redundancy, and the delay-sensitive
applications can be better supported by the direct transmission
or source-guaranteed redundant scheme. The analysis of the
redundant scheduling will be considered as future work and
is out the scope of this paper.

2) Partially overlapped mobility region: In this paper, we
consider that the source and the destination have a completely
overlapping mobility region, or equivalently, the source and
destination have the same social spot. Therefore, all the relays
contacting the source would also contact the destination.
In a more general case that the source and destination are
associated with different social spots, not all vehicles can be
relays because vehicles may have disjoint mobility regions
with the destination. In this scenario, we acknowledge that
the two-hop relay scheme is no longer efficient unless a more
intelligent relay selection scheme is applied.

3) Vehicle density: The throughput and average packet
delay of a unicast flow highly depend on the vehicle density.
For a large scale urban VANET, there are spatial variations
in vehicle density. Vehicle density in hot social spots would
be much higher than that in normal places, and accordingly
each vehicle may have less opportunity to transmit packets be-
cause of potentially severe medium access contentions among
vehicles. Under such circumstance, the performance in terms
of throughput and delay degrades. Therefore, it may not be
feasible to conduct excessive unicast flows through VANET
in urban area with high vehicle density.

V. CONCLUSION

In this paper, we have investigated the asymptotic capacity
and delay performance for social-proximity urban vehicular
networks. We consider a localized mobility model centering
at a social spot for each vehicle. The user applications are
of proximity nature, i.e., the source and the destination have
the identical social spot. With the proposed two-hop relay
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scheme, a constant average per-vehicle throughput can be
achieved w.h.p.; although the throughput and average packet
delay of a unicast flow highly depend on the vehicle density,
almost constant per-vehicle throughput Ω( 1

log (N) ) and almost
constant delay O(log2 (N)) are feasible even in some area
with high vehicle density. Our results reveal that the social-
proximity vehicular network is scalable to be deployed in
urban environments.

APPENDIX PROOF OF LEMMA 1

We first recall the Vapnik-Chervonenkis Theorem [22].
Some relevant definitions are in the following. A Range Space
is a pair (X,F), where X is a set and F is a family of subsets
of X . For any A ⊆ X , we define PF (A), the projection of F
on A, as {F ∩A : F ∈ F}. We say that A is shattered by F
if PF (A) = 2A, i.e., if the projection of F on A includes all
possible subsets of A. The VC-dimension of F , denoted by
VC-d(F) is the cardinality of the largest set A that F shatters.
If arbitrarily large finite sets are shattered, the VC dimension
of F is infinite.

The Vapnik-Chervonenkis Theorem: If F is a set of finite
VC-dimension and {Yj} is a sequence of N i.i.d. random
variables with common probability distribution P , then for
every ϵ, δ > 0

Pr

 sup
F∈F

∣∣∣∣∣∣ 1N
N∑
j=1

I(Yj ∈ F )− P (F )

∣∣∣∣∣∣ ≤ ϵ

 > 1− δ (13)

whenever

N > max

{
8VC-d(F)

ϵ
log2

16e

ϵ
,
4

ϵ
log2

2

δ

}
. (14)

Here I(Yj ∈ F ) is the indicator variable that takes value 1 if
Yj ∈ F and 0 otherwise.

Proof of Lemma 1: We use the Vapnik-Chervonenkis
Theorem to prove this lemma. We denote F as the rectangular
area of 2A(2A−1) squares centered at a given road segment,
as shown in Fig. 4. If a vehicle chooses a square within F
as its Tier(1) region, its mobility region will cover the road
segment at the center of F . Let I(Yj ∈ F ) be 1 if the Tier(1)
region of vehicle j falls into F and 0 otherwise. Pr(I(Yj ∈
F ) = 1) = 2A(2A−1)

C . Let F be the class of all such F
rectangular areas. It is easy to show that the VC-dimension of
F is at most 4 [23]. Therefore, for all rectangular area F ,

Pr

{
sup
F∈F

∣∣∣∣∣
∑N

j=1 I(Yj ∈ F )

N
− 2A(2A− 1)

C

∣∣∣∣∣ ≤ ϵ

}
> 1− δ.

The condition (14) holds when ϵ = δ = ∆ϵ log (N)
N , where

∆ϵ := max{8VC-d(F), 16e}. Recall that C = N/2d. Thus,
the Vapnik-Chervonenkis Theorem states that

Pr

 sup
F∈F


N∑
j=1

I(Yj ∈ F )

 ≤ 4dA(2A− 1) + ∆ϵ log (N)


> 1− ∆ϵ log (N)

N
.

We conclude that w.h.p., the number of vehicles whose mobili-
ty region contains a given road segment is at most O(log (N)).
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