## COMP3270: Computer Networks Fall 2016

Instructor: Ning Lu, HL 407, Tel. 250-828-5224
nlu@tru.ca
Prerequisites: COMP 2130, COMP 2230. Knowledge of MATH 3020 (undergrad probability) would be helpful.

Course webpage: $h t t p: / / f a c u l t y . t r u . c a / n l u / c o m p 3270 . h t m l ~$

## Meeting Time:

Lectures (Sept. 7 - Dec. 2)
8:30 am - 9:20 am on Tuesdays, OM 1771
8:30 am - 9:20 am on Wednesdays, OM 2742
11:30 am-12:20 pm on Thursdays, OM 2402
Seminar/Lab
9:30 am-10:20 am on Fridays, OM 1360
No seminar/lab on Sept. 9 and Nov. 11 (Remembrance Day)
Office Hours (HL 407)
9:30 am-12:00 pm on Tuesdays and Wednesdays
10:30 am - 12:00 pm on Fridays

## Grading:

10\% Lab assignment
20\% Homework (four assignments)
30\% One midterm exam

- Date: 11:30 am-12:20 pm, Thursday, Oct. 13; Room: OM 2402

40\% Final exam

- Date and Location (TBA)

No extra credit work will be assigned

## Materials:

Texts

- Course Notes (will be posted after each lecture)

References

1. Behrouz A. Forouzan, Data Communications and Networking, fifth edition, McGraw-Hill, 2007
2. James F. Kurose and Keith W. Ross, Computer Networking - A Top Down Approach, 6th edition, Addison Wesley
3. D. Bertsekas and R. Gallager, Data Networks, Prentice Hall, 1992
4. R. Srikant and L. Ying. Communication Networks: An Optimization, Control and Stochastic Networks Perspective, Cambridge University Press, 2014 (advanced material)

## Objectives of COMP 3270

1. To understand the fundamental concepts in computer networks
2. To understand the principles and practice of designing, analyzing, and operating networks.

## How to do well in the course?

- Attend lectures!
$\square$ Participate in discussions, and read the corresponding lecture notes after class
$\square$ Understand, not have to memorize!
* Consider yourself as the designer to please both the users (guaranteed service) and your boss (reduced cost)
* KEEP Question on "Why do we need it?"
* Think about the networks around you: cellular networks on the street, Internet at home, WiFi in the building, ...


## Topics

- Introduction to Computer Networks
- Network Performance
- Physical Layer: Fundamentals of Digital Transmission
- Data Link Layer: Error Control, Retransmission Protocols, Medium Access Control (MAC)
- Network Layer: IP addressing, Routing
- Transport Layer: TCP, UDP, Flow control and Congestion control
- Application Layer: HTTP, DNS, MQTT
- Special topic: Engineering data center networks


## A note about the slides

Some of the slides were originally prepared by Kurose and Ross based on their book Computer Networking: A Top Down Approach.

Some of the slides were originally prepared by Prof. Sherman Shen based on his course ECE 358 at the University of Waterloo.

I have added more slides and edited some.

## T1: Introduction <br> Objectives: What is computer network? Why computer network? How it works, how good it is

1.1 What is computer network?

Examples of computer network
The Internet
Network structure: edge and core
1.2 Why computer networks
1.3 The way networks work
1.4 Performance metrics:

Delay, loss and throughput in packet-switched networks

## Examples of Computer Network

- Local area (802.3) network



## Examples of Computer Network

- Wireless network



## Examples of Computer Network

- Data center network



## Examples of Computer Network

- Undersea Internet backbone



## What is Computer Network

A computer network or data network is a telecommunications network which allows computers to exchange data.


Software: protocols, OS, drivers, apps

## T1: Introduction

1.1 What is computer network?

Examples of computer network
The Internet
Network structure: edge and core
1.2 Why computer networks
1.3 The way networks work
1.4 Performance metrics:

Delay, loss and throughput in packet-switched networks

## Definition of Internet

The Internet is a global system of interconnected computer networks that use the standard Internet protocol suite (TCP/IP) to link several billion devices worldwide and exchange information.

## The Internet

-Early 1990s

* Internet Service providers (ISP)
* 1994: World Wide Web (WWW) \& Web browser
$\square$ Number of devices



## Internet: "nuts and bolts" view (1)



## Internet: "nuts and bolts" view (2)

* Internet: "network of networks"
- loosely hierarchical
* Internet permits the reliable exchange of information with low cost
* Protocols control sending, receiving of msgs
(it is important that everyone agrees on what each and every protocol does)
* Internet standards
- RFC: Request For Comments
- IETF: Internet Engineering Task Force


## Internet: a service view

* Communication infrastructure enables distributed applications:
- Web, VoIP, email, games,
- e-commerce, file sharing
* Communication services provided to apps:
- reliable data delivery from source to destination
- "best effort" (unreliable) data delivery



## T1: Introduction

1.1 What is computer network?

Examples of computer network
The Internet
Network structure: edge and core
1.2 Why computer networks
1.3 The way networks work
1.4 Performance metrics:

Delay, loss and throughput in packet-switched networks

## A closer look at network structure:

* Network edge: applications and hosts
* Access networks, physical media:
wired, wireless
communication links
* Network core:
- interconnected routers
- network of networks



## The network edge:

* End systems (hosts):
- run application programs
- e.g. Web, email
- at "edge of network"
* Client/server model
- client host requests, receives service from always-on server
- e.g. Web browser/server; email client/server
* Peer-peer model:
- minimal (or no) use of dedicated servers

- e.g. Skype, BitTorrent


## Access networks and physical media

Q: How to connect end systems to edge router?

* residential access networks
* institutional access networks (school, company)
* mobile access networks

Keep in mind:

* bandwidth (bits per second) of access network?
* shared or dedicated?



## Dial-up Modem



* uses existing telephony infrastructure
- home directly-connected to central office
* up to 56 Kbps direct access to router (often less)
* can't surf, phone at same time: not "always on"


## Digital Subscriber Line (DSL)



* uses existing telephone infrastructure
* up to 1 Mbps upstream (today typically < 256 kbps )
* up to 8 Mbps downstream (today typically < 1 Mbps )
* dedicated physical line to telephone central office


## Residential access: cable modems

* uses cable TV infrastructure, rather than telephone infrastructure
* HFC: hybrid fiber coax
- asymmetric: up to 30Mbps downstream, 2 Mbps upstream
* Network of cable, fiber attaches homes to ISP router
- homes share access to router
- unlike DSL, which has dedicated access


## Ethernet Internet access



* typically used in companies, universities, etc
* $10 \mathrm{Mbps}, 100 \mathrm{Mbps}, 1 \mathrm{Gbps}, 10 \mathrm{Gbps}$ Ethernet
* Question: How do nodes efficiently share the medium?


## Wireless access networks

* Shared wireless access network connects end system to router
- via base station aka "access point"
* Wireless LANs:
- 802.11b/g (WiFi): 11 or 54 Mbps
* Wider-area wireless access
- Cellular network



## Physical Media

* bit: propagates between transmitter/receiver pairs
* physical link: what lies between transmitter \& receiver
* guided media:
- signals propagate in solid media: copper, fiber, coax
* unguided media:
- signals propagate freely, e.g., radio


## Twisted Pair (TP)

* two insulated copper wires
- Category 3: traditional phone wires, 10 Mbps Ethernet
- Category 5: 100Mbps Ethernet



## Physical Media: coax, fiber

Coaxial cable:

* two concentric copper conductors
* bidirectional
* baseband:
- single channel on cable
- legacy Ethernet
* broadband:
- multiple channels on cable
- HFC

Fiber optic cable:

* glass fiber carrying light pulses, each pulse a bit
* high-speed operation:
- high-speed point-to-point transmission (e.g., 10's100's Gpbs)
* low error rate: repeaters spaced far apart ; immune to electromagnetic noise


## Physical media:

Radio:

* signal carried in
electromagnetic spectrum
* no physical "wire"
* bidirectional
* propagation environment effects:
- reflection
- obstruction by objects
- interference


## Radio link types:

* microwave
- e.g. up to 45 Mbps channels
* LAN (e.g., WiFi)
- 11Mbps, 54 Mbps
* wide-area (e.g., cellular)
- 36 cellular: ~ 1 Mbps
* satellite
- Kbps to 45Mbps channel (or multiple smaller channels)
- 270 msec end-end delay
- geosynchronous versus low altitude


## Inside the radio wave spectrum

Almost every wireless technology - from cell phones to garage door openers - uses radio waves to communicate. Some services, such as TV and radio broadcasts, have exclusive use of their frequency within a geographic area. But many devices share frequencies, which can cause interference. Examples of radio waves used by everyday devices:


Source: New America Foundation, MCT, Howstuffworks.com
Graphic: Nathaniel Levine, Sacramento Bee

