COMP3270: Computer Networks Fall 2016

Instructor: Ning Lu, HL 407, Tel. 250-828-5224

<u>nlu@tru.ca</u>

Prerequisites: COMP 2130, COMP 2230. Knowledge of MATH 3020 (undergrad probability) would be helpful.

Course webpage: http://faculty.tru.ca/nlu/comp3270.html

Introduction 1-1

Meeting Time:

Lectures (Sept. 7 — Dec. 2) 8:30 am - 9:20 am on Tuesdays, OM 1771 8:30 am - 9:20 am on Wednesdays, OM 2742 11:30 am - 12:20 pm on Thursdays, OM 2402

Seminar/Lab 9:30 am - 10:20 am on Fridays, OM 1360 No seminar/lab on Sept. 9 and Nov. 11 (Remembrance Day)

Office Hours (HL 407) 9:30 am – 12:00 pm on Tuesdays and Wednesdays 10:30 am – 12:00 pm on Fridays

Grading:

10% Lab assignment

20% Homework (four assignments)

30% One midterm exam • Date: 11:30 am - 12:20 pm, Thursday, Oct. 13; Room: OM 2402

40% Final exam • Date and Location (TBA)

No extra credit work will be assigned

Materials:

Texts

Course Notes (will be posted after each lecture)

References

- 1. Behrouz A. Forouzan, Data Communications and Networking, fifth edition, McGraw-Hill, 2007
- 2. James F. Kurose and Keith W. Ross, Computer Networking A Top Down Approach, 6th edition, Addison Wesley
- 3. D. Bertsekas and R. Gallager, Data Networks, Prentice Hall, 1992
- R. Srikant and L. Ying. Communication Networks: An Optimization, Control and Stochastic Networks Perspective, Cambridge University Press, 2014 (advanced material)

Objectives of COMP 3270

- 1. To understand the fundamental concepts in computer networks
- 2. To understand the principles and practice of designing, analyzing, and operating networks.

How to do well in the course?

Attend lectures!

- Participate in discussions, and read the corresponding lecture notes after class
- Understand, not have to memorize!
 - Consider yourself as the designer to please both the users (guaranteed service) and your boss (reduced cost)
 - * KEEP Question on "Why do we need it? "
 - Think about the networks around you: cellular networks on the street, Internet at home, WiFi in the building, ...

Topics

- Introduction to Computer Networks
- Network Performance
- Physical Layer: Fundamentals of Digital Transmission
- Data Link Layer: Error Control, Retransmission Protocols, Medium Access Control (MAC)
- Network Layer: IP addressing, Routing
- Transport Layer: TCP, UDP, Flow control and Congestion control
- Application Layer: HTTP, DNS, MQTT
- Special topic: Engineering data center networks

A note about the slides

Some of the slides were originally prepared by Kurose and Ross based on their book *Computer Networking: A Top Down Approach*.

Some of the slides were originally prepared by Prof. Sherman Shen based on his course ECE 358 at the University of Waterloo.

I have added more slides and edited some.

T1: Introduction

<u>Objectives: What is computer network? Why</u> <u>computer network? How it works, how good it is</u>

1.1 What is computer network?

Examples of computer network

The Internet

Network structure: edge and core

- 1.2 Why computer networks
- 1.3 The way networks work
- 1.4 Performance metrics:

Delay, loss and throughput in packet-switched networks

Local area (802.3) network

Wireless network

Data center network

Undersea Internet backbone

What is Computer Network

A computer network or data network is a telecommunications network which allows computers to exchange data.

Computer/end device

T1: Introduction

1.1 What is computer network? Examples of computer network The Internet

Network structure: edge and core

- 1.2 Why computer networks
- 1.3 The way networks work
- 1.4 Performance metrics:

Delay, loss and throughput in packet-switched networks

Definition of Internet

The **Internet** is a global system of interconnected computer networks that use the standard **Internet** protocol suite (TCP/IP) to link several billion devices worldwide and exchange information.

The Internet

Early 1990s

Internet Service providers (ISP)

* 1994: World Wide Web (WWW) & Web browser

Number of devices

Internet: "nuts and bolts" view (1)

PC

access points

wired links

Communication links

- fiber, copper, radio, satellite
- transmission rate = bandwidth

X router Routers: forward packets (chunks of data)

Internet: "nuts and bolts" view (2)

Internet: "network of networks"

- loosely hierarchical
- Internet permits the reliable exchange of information with low cost
- Protocols control sending, receiving of msgs
- (it is important that everyone agrees on what each and every protocol does)
- Internet standards
 - RFC: Request For Comments
 - IETF: Internet Engineering Task Force

Internet: a service view

- Communication infrastructure enables distributed applications:
 - Web, VoIP, email, games,
 - e-commerce, file sharing
- Communication services
 provided to apps:
 - reliable data delivery from source to destination
 - "best effort" (unreliable) data delivery

T1: Introduction

1.1 What is computer network? Examples of computer network The Internet Network structure: edge and core

- 1.2 Why computer networks
- 1.3 The way networks work
- 1.4 Performance metrics:

Delay, loss and throughput in packet-switched networks

A closer look at network structure:

- Network edge: applications and hosts
- Access networks, physical media: wired, wireless communication links
- Network core:
 - interconnected routers
 - network of networks

The network edge:

End systems (hosts):

- run application programs
- e.g. Web, email
- at "edge of network"

Client/server model

- client host requests, receives service from always-on server
- e.g. Web browser/server; email client/server
- Peer-peer model:
 - minimal (or no) use of dedicated servers
 - e.g. Skype, BitTorrent

Access networks and physical media

- Q: How to connect end systems to edge router?
- residential access networks
- institutional access networks (school, company)
- mobile access networks

Keep in mind:

- Solution bandwidth (bits per second) of access network?
- shared or dedicated?

Dial-up Modem

- suses existing telephony infrastructure
 - home directly-connected to central office
- up to 56Kbps direct access to router (often less)
- * can't surf, phone at same time: not "always on"

Digital Subscriber Line (DSL)

- * uses existing telephone infrastructure
- * up to 1 Mbps upstream (today typically < 256 kbps)</p>
- * up to 8 Mbps downstream (today typically < 1 Mbps)</p>
- * dedicated physical line to telephone central office

Residential access: cable modems

- uses cable TV infrastructure, rather than telephone infrastructure
- HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream, 2
 Mbps upstream
- Network of cable, fiber attaches homes to ISP router
 - homes share access to router
 - unlike DSL, which has dedicated access

Ethernet Internet access

- typically used in companies, universities, etc
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps Ethernet
- Question: How do nodes efficiently share the medium?

Wireless access networks

- Shared wireless access network connects end system to router
 - via base station aka "access point"
- Wireless LANs:
 - 802.11b/g (WiFi): 11 or 54 Mbps
- Wider-area wireless access
 - Cellular network

Physical Media

- bit: propagates between transmitter/receiver pairs
- * physical link: what lies between transmitter & receiver
- suided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Twisted Pair (TP)

- * two insulated copper wires
 - Category 3: traditional phone wires, 10 Mbps Ethernet
 - Category 5: 100Mbps Ethernet

Physical Media: coax, fiber

Coaxial cable:

- two concentric copper conductors
- bidirectional
- baseband:
 - single channel on cable
 - legacy Ethernet
- broadband:
 - multiple channels on cable
 - HFC

Fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10's-100's Gpbs)
- low error rate: repeaters spaced far apart ; immune to electromagnetic noise

Physical media:

<u>Radio:</u>

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

Radio link types:

microwave

- e.g. up to 45 Mbps channels
- LAN (e.g., WiFi)
 - 11Mbps, 54 Mbps
- * wide-area (e.g., cellular)
 - 3G cellular: ~ 1 Mbps
- satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

Inside the radio wave spectrum

Almost every wireless technology – from cell phones to garage door openers – uses radio waves to communicate. Some services, such as TV and radio broadcasts, have exclusive use of their frequency within a geographic area. But many devices share frequencies, which can cause interference. Examples of radio waves used by everyday devices:

spectrum, a range of electric and magnetic waves of different lengths that travel at the speed of light; other parts of the spectrum include visible light and x-rays; the shortest wavelengths have the highest frequency, measured in hertz

Source: New America Foundation, MCT, Howstuffworks.com Graphic: Nathaniel Levine, Sacramento Bee

crest

Most of the white

are reserved

areas on this chart

1 kilohertz (kHz) = 1.000 hertz

1 megahertz (MHz) = 1 million hertz

1 gigahertz (GHz) = 1 billion hertz