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Abstract—Traffic monitoring in urban transportation systems
can be carried out based on vehicular sensor networks (VSNs).
Probe Vehicles (PVs), such as taxis and buses, and Floating Cars
(FCs), such as patrol cars for surveillance, can act as mobile
sensors for sensing the urban traffic and send the reports to
traffic monitoring center (TMC) for traffic estimation. In TMC,
sensing reports are aggregated to form traffic matrix, which is
used to extract traffic information. Since the sensing vehicles
cannot cover all the roads for all the time, TMC needs to estimate
the un-sampled data in traffic matrix. As this matrix can be
approximated to be of low-rank, Matrix Completion (MC) is
an effective method to estimate the un-sampled data. However,
our previous analysis on the real traces of taxis in Shanghai
reveals that MC methods do not work well due to the uneven
samples of PVs, which is common in urban traffic. To exploit the
intrinsic relationship between unevenness of samples and traffic
estimation error, we study the temporal and spatial entropies
of samples and successfully define the important criterion, i.e.
average entropy of the sampling process. A new sampling rule
based on this relationship is proposed to improve the performance
of estimation and monitoring. With the sampling rule, two new
patrol algorithms are introduced to plan the paths of controllable
FCs to proactively participate in traffic monitoring. By utilizing
the patrol algorithms for real dataset analysis, the estimation
error reduces from 35% to about 10%, compared with random
patrol or interpolation method in traffic estimation. Both the
validity of the exploited relationship and the effectiveness of the
proposed patrol control algorithms are demonstrated.
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TRAFFIC congestion has become a severe problem in
metropolises according to the data in “TTI’s 2012 Urban

Mobility Report” [1]. It is reported that 5.52 billion hours
delay and 2.88 billion gallons of fuel wasted in urban area
of the US due to traffic congestion in 2011. To reduce the
traffic congestion, the information of traffic condition plays
a vital role [2, 3]. With real-time traffic information, the
drivers can plan their routes to avoid crowded areas towards
their destinations in the urban area. Traffic monitoring center
(TMC) can also benefit from the information as it can provide
timely traffic guidance by means of traffic light control to
prevent traffic congestion. Besides, it may benefits the usage
of vehicular network’s spectrum by using some opportunistic
spectrum access schemes as mentioned in [4].

The objective of traffic monitoring is to achieve the traffic
condition precisely and efficiently. Besides the static sensors
such as digital camera and loop detector, Vehicular Sensor
Network (VSN)[5, 6], which benefits from the mobility of
the vehicles, is an effective and economical way to sense
the real-time traffic conditions. For example, in Shanghai,
China, the taxis and buses are equipped with on board units
(OBUs) such as GPS receiver, speedometer and accelerometer
to act as Probe Vehicles (PVs) such that traffic conditions of
the roads can be sensed by the mobile vehicles. These PVs
periodically generate traffic reports and send them through
cellular networks to the TMC called Shanghai Traffic Infor-
mation Center (STIC). In STIC, map matching algorithm is
adopted to match each report to a certain road, so that the
mean traveling speed of the road during a period of time can
be computed. The preprocessed data is then used to estimate
the traffic condition of all the roads in the cloud server. Finally,
the estimation results are published by STIC on the Internet
or Traffic Message Boards in main streets and elevated roads
of Shanghai.

Generally, traffic matrix is used to extract traffic information.
In a traffic matrix X = {xij}, the entry xij represents the
traffic condition (e.g. average speed based on all the reports
from PVs on the road) of the i-th road in the city at the j-th
duty cycle of a day. Thus each row represents the traffic reports
of a specific road during all the duty cycles of a day, and each
column represents the traffic reports at a specific duty cycle for
all roads. Unfortunately, the distribution of the PVs leads to
the uneven sampling of the traffic conditions. By the analysis
on the real traces of taxis in Shanghai from STIC, we find that
the distribution is so uneven that about 70% of the roads have
traffic reports for less than 30% of the duty cycles in a day.
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Similar results are also given in [7, 8]. Despite the mobility
feature of the vehicles, the TMC cannot guarantee to get the
traffic condition for most of the roads in most of the time.
It is very desirable to get the traffic estimation from aspects
of location based services for vehicles and traffic management
for TMC.

In order to estimate the traffic condition of these un-sampled
roads, Matrix Completion (MC)[9] technique (an extension of
compressive sensing) can be developed to reconstruct the data
in the empty entries of the traffic matrix (see, e.g., [8] and
[10]). The advantages of MC based estimation algorithms are
the efficiency and high accuracy of estimation based on only
a small portion of samples in the matrix in the conditions that
the singular values of the matrix are sparse and the samples
distribute uniformly randomly in the matrix. However, the
sampling reports of the PVs are uneven due to the uneven
urban traffic distribution, and thus the unevenness destroys the
performance of MC based estimation. Moreover, because MC
technique depends on the minimization of the rank of matrix,
it is unapplicable for the case that there are any empty rows
(all the entries of the row are empty) or empty columns of
the matrix. By analyzing the real traffic data in Shanghai, it
will be shown in Section IV for details that about 17% of
the roads have no reports for a whole day. It results in a big
challenge to utilize MC technique for traffic estimation. How
to achieve the traffic conditions of these un-sampled roads is
a vital problem for urban traffic management. One reason is
that private cars may often pass these roads even though they
are not frequently passed by PVs. More importantly, they are
the alternatives for traffic guidance to avoid traffic congestion.
One possible approach to facilitate MC based estimation is to
improve the evenness of samples. It is more effective to avoid
empty columns or empty rows in traffic matrix.

Inspired by the fact that utilizing sensors’ mobility can
improve the network performance such as coverage [11, 12],
and connectivity [13], we intend to control the movement of
some vehicles to avoid empty rows or empty columns in the
sampled matrix and thus reduce the estimation error. Different
from buses, taxis and private cars which just passively par-
ticipate in traffic monitoring, some controllable vehicles pro-
actively participate in traffic monitoring. In Shanghai, these
controllable vehicles could be the patrol cars from TMC,
and traffic cars and surveillance cars of Road Policing Units
(RPUs) of Shanghai Municipal, which are called Floating Cars
(FCs) in the rest of the paper. The traffic cars and surveillance
cars are used to assist with their duties in patrolling and
responding to incidents, enforcing traffic laws in certain areas
to gather evidence of any criminal offences. We can monitor
the traffic more effectively by planning patrolling paths for FCs
to improve the evenness of samples in traffic matrix. Compared
to the solution of equipping more static sensors such as digital
cameras and loop detectors, utilizing the FCs in such a way is
an economical solution without extra costs of installation and
maintenance. According to our best knowledge, this is the first
time to improve the MC based estimation by controlling the
mobility of some sensors.

In order to achieve the reasonable control for FCs, two issues
are necessary to be addressed. One issue is to explore how

the unevenness of samples affects the estimation error of MC
based algorithms. The other issue is to investigate effective
sampling rules (i.e. control laws of FCs) such that the MC
based estimation can be improved.

For the first issue, it is necessary to find a new criterion
to describe the evenness of samples, since the common used
criterion, sampling ratio, is demonstrated to be not appropriate
to represent the correlation of the data (detailed analysis will
be given in Section V). It is known that entropy can be used
to measure the uncertainty of the information and also the
correlation of the data. It is a potential criterion to represent
the performance of the sampling process. Consequently, we
explore the relationship between the estimation error and
samples of MC based method from the perspective of entropy
in this paper. It turns out to be significant for designing the
sampling rules. By analyzing the traffic data from STIC in
Shanghai, we introduce the criterion of average entropy of
samples to evaluate the estimation. This kind of approach is
not seen in open literature.

For the second issue, we come up with a sampling rule based
on the introduced average entropy, so that the estimation error
can be minimized with small sampling ratio. According to the
rule, we propose two patrol algorithms for FCs by minimizing
the average entropy of each road.

The main contributions of this paper are as follows:
• By analyzing the traffic data of STIC in Shanghai, it is

found that the apparent uneven distribution of the PVs
severely influences the performance of the MC-based
estimation of the urban traffic conditions. Moreover,
the new criterion of average entropy is introduced to
describe the unevenness of samples.

• The relationship between the estimation error of MC
based method and average entropy of the samples is
explored and modeled by a log function.

• Based on the explored relationship between estimation
error and average entropy, control method of FCs are
given in patrol ways. The number of required FCs can
be determined to satisfy a pre-described estimation error.

The remainder of the paper is organized as follows. The
related works are discussed in Section II. In Section III, we
describe the system model for urban traffic estimation and
show the preliminary of MC technique. The analysis of the
real traces is shown in Section IV. The relationship between the
estimation error and entropy of samples is explored in Section
V. Based on the proposed relationship, patrol algorithms for
FCs are given in Section VI. Simulation studies are given in
Section VII to evaluate of the patrol algorithms, followed by
the conclusion in Section VIII.

II. RELATED WORKS

In this section, we discuss the related works on traffic
estimation, mobility management and patrol control of path
planning and highlight the contributions of this paper.

A. Traffic Monitoring with VSN
There are some approaches for estimation of the traffic

conditions by using vehicles. In [16–18], PVs count the
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number of neighbor vehicles via broadcasting beacon message
and receiving responses through OBUs to estimate the traffic
density. In this way, traffic conditions can be estimated without
equipping all vehicles with GPS. However, these methods,
namely Infrastructure-Free Traffic Information System (IFTIS)
in [16] and MobSampling in [17], can only estimate micro-
scopic traffic density since they are not scalable for large-scale
urban traffic.

Another way for infrastructure-free traffic estimation is
compressive sensing (CS). It is a signal processing technique
for efficiently reconstructing a signal from relatively few
measurements by taking advantage of signal’s sparseness or
compressibility. There have been a lot of works on efficient
data gathering for sensor networks with compression and
recovery techniques in CS methodology. Luo et al. [19] first
proposed a compressive data gathering (CDG) for large scale
WSNs based on CS. The proposed method can reduce the
global data traffic and balance the energy consumption of
the sensor nodes. Similarly, the so-called Compressed Sparse
Function (CSF) method is proposed in [20] to gather the data
in WSN. The sparse function is used to compress the original
data of sensor nodes. Instead of utilizing CS based algorithm
to recover the observations of sensors, Cheng et al. proposed
Spatio-Temporal CDG (STCDG) in [21] to gather the data
based on MC technique. Inspired by the CS/MC-based data
gathering scheme in WSNs, Liu et al. extended the CDG-
based scheme to Vehicular Ad Hoc Networks (VANETs) in
[22], where vehicles with OBUs need to report the spatial
correlated data to the roadside units (RSUs) through multi-
hop transmission. During the transmission, the data of vehi-
cles is compressed with the similar technique as CDG, and
then recovered by RSUs. Taking the scarce communication
resource among vehicles into accounts, Wang et al. proposed
Compressive Sensing based Monitoring (CSM) in [23] for
large-scale monitoring applications with vehicular networks.
They used entropy analysis on the traffic data to show the
strong correlation in the data readings of vehicles. Besides
CS, MC are also used in monitoring application with vehicular
networks. In [8], it is reported that the traffic matrix can be
well considered as a low-rank one such that MC technique can
be applied.

The aforementioned CS/MC based methods can be used to
gather the traffic data efficiently with sparsifying sensor (or
vehicle in [22]) data, but they are still unable to estimate the
data in empty columns of the traffic matrix for urban traffic
estimation. In one of our previous works in [10], the traffic
estimation problem is also formulated into a MC problem by
taking advantage of the low-rank feature, which represents
sparsity in singular values. In order to achieve more reasonable
estimations, we paid great attention to the temporal continuity
of the traffic condition and the bounds of data in traffic matrix,
and set a projection for graded traffic matrix without empty
columns. Then the efficient HaTTEM (Half Thresholding MC
for Traffic Estimation and Monitoring) method is proposed
with low computational complexity. However, only those roads
of TMC’s interest can be estimated. In this paper, the HaTTEM
method is used to estimate the traffic for all roads in the city.
It means much more empty columns are to be treated in the

traffic matrix and the method must be scalable. In the best
knowledge of authors, seldom of the existing CS/MC works
for WSNs and VANETs considers the influence of sampling
process. We will show in Section IV that in urban VSNs, the
data gathering cost increases dramatically if we only simply
increase the number of PVs to collects more data. It is even
worse that the estimation error may fail to obviously reduce
with higher sampling ratio in traffic matrix, based on our
analysis of a large real dataset of buses and taxis traces in
Section V. The features of samples (data in the traffic matrix)
becomes significant for estimation effectiveness and efficiency
and they are needed to be exploited.

In this paper, by analyzing real traces of taxis in Shanghai,
China, we reveal that the evenness of samples strongly relates
to the MC based estimation of traffic matrix. Motivated by the
important observation, we explore this intrinsic relationship by
a new criterion of average entropy of samples. Different from
the existing works, this paper focuses on proactively sensing
the needed traffic data to improve the estimation performance
with lower sampling ratio. Thus there is almost no extra cost
for sensing and data gathering by only replanning the paths of
FCs.

B. Mobility Management in Ad Hoc Networks

The mobility of the network nodes have been leveraged to
improve the coverage and connectivity of the networks. Liu et
al.[11] used mobile sensor nodes to cover a region for intrusion
detection, so that the coverage of the network depends on not
only the initial network configuration but also the sensors’
mobility. He et al.[12] proposed that mobile node should
move using the knowledge of intruder to further improve the
coverage of mobile sensor networks. In order to improve the
connectivity, mobile nodes act as data mule to deliver the data
from the isolated area to the sink or other nodes[13, 14], so that
the network can be deployed not as dense as the static sensor
networks and thus it reduces the deployment cost. Besides, Ma
et al.[15] proposed a mobile data-gathering scheme, in which
the tour of the mobile sink is carefully planned to prolong the
lifetime of the wireless sensor networks.

In this paper, we try to manage the mobility of FCs in VSN
to improve the performance of the system. The objective is to
change sampling to improve the evenness and thus reduce the
traffic estimation error of MC based method.

Since FCs may be the surveillance cars of RPUs, patrolling
control is an effective way to plan the paths of FCs. Chevaleyre
et al. gave some theoretical results for the patrolling problem
in [24] and compared the performance of partition based patrol
and the cyclic patrol. In [25], the so-called MSP (Multi-level
Subgraph Patrolling) Algorithm is proposed for multiple robots
to patrol. The area is modeled as a graph and the robots need to
maximize the visit frequency for every vertex in the graph. The
patrol algorithm is based on Hamiltonian cycles and longest
path. Different from them, the proposed patrol algorithms in
this paper try to maximize the visit frequency for every edge
in the graph.
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Fig. 1. Architecture of VSN for urban traffic estimation

III. SYSTEM MODELS AND PRELIMINARIES

A. System Models

Consider a VSN for urban traffic monitoring as shown in
Fig. 1. PVs and FCs act as mobile sensor nodes to sense
the traffic condition of the roads with assistance of on-board
sensors such as GPS receiver, speedometer and accelerometer.
Generally, the PVs can be buses and taxis that passively
participates in traffic monitoring. The moving paths of buses
and taxis are predefined and determined by the drivers or
the passengers, respectively. Hence they are uncontrollable by
traffic monitoring center. On the other hand, FCs, such as patrol
vehicles from TMC that are specially used for traffic monitor-
ing, or surveillance cars from RPUs, proactively participate in
traffic monitoring. They choose their paths autonomously or
reactively according to the guidance from TMC to travel a set
of given roads. Consequently, their paths are controllable (or
partially controllable) according to the requirement of traffic
monitoring and other surveillance purposes.

In the considered system, PVs and FCs upload their sensing
reports, including location, time of report, current speed and
headings to TMC via GPRS channel or RSU as reported in
[7] and [26]. Then the TMC collects all the traffic reports and
preprocesses them for estimation. For example, the location of
each report is matched to one road by map matching algorithm,
data from different sensors are fused and traffic matrix X
can be formed. The MC based estimation of traffic condition
could take place in the cloud server as shown in Fig. 1. The
estimation result is then sent back to TMC and published to
vehicles in the city.

The roads in the city are modeled as the links in the directed
graph G = {V,E}, where V is the vertex set and represents
the intersections, and E is the edge set. ⟨vi, vj⟩ ∈ E if and
only if the vehicles can drive from the intersection vi to the
intersection vj directly. We refer to a directed edge as a link,
and a road is the undirected path connecting two intersections
in the rest of the paper. n1 is the number of links whose traffic
conditions need to be estimated. The sensing reports of PVs in
the past time duration T are used. Define the time granularity
as ∆T , the time duration T is partitioned into n2 , ⌈T/∆T ⌉

duty cycles. TMC constructs an indicate matrix A = {aij},
where aij = 1 for the case that at least one report of the i-th
link during the j-th duty cycle is uploaded, otherwise aij = 0.
Hence, the samples of PVs can be represented by the indicate
matrix A.

Define the traffic matrix to be estimated as X = {xij} ∈
Rn1×n2

+ , where Rn1×n2
+ represents positive real space with the

dimension of n1 ×n2. Let the sample matrix be Y = {yij} ∈
Rn1×n2

+ , where yij denotes the average speed of all the PVs in
the i-th link during the j-th duty cycle. Obviously, the entry
yij is empty if aij = 0, and xij can be well estimated by
xij = yij for aij = 1. The objective of traffic estimation is to
estimate all the entries of X based on the samples Y .

B. MC Based Traffic Estimation
It has been shown in [8] that the traffic matrix can be

approximated to a low rank matrix. Hence, MC is used in this
paper to estimate the un-sampled values in the traffic matrix
via solving the following general problem:

X̂ = argmin
X

rank(X)

s.t. PΩ(Y ) = PΩ(X)
(1)

where Ω = {(i, j)|aij = 1} is the set of the index of the
sampled data of X , and PΩ(X) : Rn1×n2

+ → Rn1×n2
+ is the

projection to let xij = 0, ∀(i, j) /∈ Ω. With the knowledge that
all the values in the traffic matrix should be non-negative, and
the observations of each link usually does not change rapidly
except for the peak hour, we modify the problem (1) to the
following problem for more realistic sake.

X̂ = argminX{∥svd(X)∥0 + γ∥T (X)∥22 + γ∥B(X)∥22}
s.t. PΩ(X) = PΩ(Y )

(2)
where || · ||0 is the L0-norm of a vector (returns the number of
non-zeros in the vector), svd(X) denotes the singular values
of X , T (X) is the punishment if large changes exist among
two consecutive samples at the same link, and B(X) is the
punishment of its negative entries. To solve the problem (2),
we adopt the HaTTEM algorithm proposed in our previous
paper [10] by the following sub-problems iteratively:

uk+1 = argmin
u

{λγ∥u∥22 + ∥u− T (Xk)∥22}
vk+1 = argmin

v
{λγ∥v∥22 + ∥v −B(Xk)∥22}

Xk+1 = argminX{λ∥svd(X)∥0
+∥PΩ(X)− PΩ(Y )∥22
+∥T (X)− uk+1∥22 + ∥B(X)− vk+1∥22}.

(3)
The main idea of the algorithm (3) is as follows. Firstly,

estimate some values in the un-sampled indices according to
the temporal continuity and data bound of the traffic data,
respectively. Secondly, use the sampled data, together with
the estimated data, to solve the minimization problem of
the rank of the traffic matrix. Due to the limitation of the
space, the detailed HaTTEM algorithm is not shown here,
and please refer to [10] for more details. In the rest of the
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paper, MC(PΩ(X)) represents the estimation result by using
HaTTEM to recover the traffic matrix according to the sample
matrix Y = PΩ(X).

IV. ANALYSIS OF UNEVENNESS OF SAMPLES IN REAL
VEHICLE TRACES

For MC based estimation methods, the data are required
to be sampled uniform randomly to achieve high estimation
accuracy in data reconstruction. However, it has been shown
that the distribution of the traffic is uneven [4, 7], which
may be due to social features discussed in [27, 28]. It leads
to the uneven sampling in traffic matrix. We exploit the
effect of unevenness on the estimation performance under real
distribution of PVs in the city.

In this section, we first use real traces dataset from STIC,
Shanghai, to analyze the distribution of PVs. Each report in
the dataset includes the information of vehicle ID, the GPS
reading of the vehicle, the time of record, the vehicle’s speed
and the heading direction of the vehicle. The data that we use
to analyze were collected on Jan. 24th, 2013, and there are
about 65 million lines of records. So there is about 1 record
of each link every minute on average. Due to the uncertainties
in GPS records, a “Point-to-Arc” based map matching method
is applied in the analysis. We find the closest link according
to a GPS record as the traveling link of a PV, subject to the
requirement that the angle difference between link’s direction
and vehicle’s heading direction is smaller than π/4.

In our analysis, we divide a day into 288 duty cycles with 5
minutes per duty cycle. Then the integrity of link i is defined
as Ii =

∑288
j=1 aij/288. The cumulative distribution function

(CDF) of integrity is shown in Fig. 2. It indicates that about
70% of the links have reports for less than 30% of the time,
and the average integrity of all links in the city is 24.26%.
This result is similar to what is reported in [8] based on the
data collected in 2007. For MC based estimation methods, a
matrix cannot be estimated if any row or column is empty.
However, according to analysis of CDF of integrity, nearly
17% links have no reports for a whole day. It represents that
17% rows in the traffic matrix are empty, and the conditions

of the corresponding links are hardly to be estimated even
using MC technique. One possible solution is to deploy static
sensors, such as inductive loops and digital cameras, on these
roads. To achieve the desired sensing coverage, the deployment
and maintenance cost of static sensors are prohibitive [8].
Comparatively, replanning some FCs paths in VSN is an
economical solution as it has been noted in the section of
Introduction.

In order to evaluate the performance of MC based methods,
we choose the links whose integrity is 100% to construct a
new traffic matrix Xfull. Then Xfull is sampled following the
statistic integrity of the links as shown in Fig. 2, and X̂full

is achieved by using the algorithm (3). It results in relative
estimation error Err , ||X̂full −Xfull||F /||Xfull||F = 35%
on average, where ∥ · ∥F is the Frobenius norm of a matrix.
However, the estimation error could be reduced to about 10%
if Xfull is sampled randomly. It implies that the performance
of the algorithm (3) is strongly related to the distribution of
samples, and is greatly limited by the unevenness, especially
by the empty rows.

From the important observation, we exploit the explicit
relationship between estimation error and the unevenness of
samples. We first give the following important definitions.

Definition 1: (Empty row/column) A row/column is called
an empty row/column if and only if all the entries of the
row/column are un-sampled.

Definition 2: (Coverage for Matrix Completion, MC-
Coverage) A matrix is of MC-coverage if and only if neither
empty columns nor empty rows exist in the matrix.

Notice that if a low-rank matrix is not MC-covered, it cannot
be recovered from the samples by MC based estimation. Hence
we estimate the number of required PVs to make the traffic
matrix X MC-covered. For simplicity, suppose all PVs are
independent [27] and identically distributed. Let pi(j) denote
the probability of a PV on the link i reporting its reading
during the j-th duty cycle. The following theorem gives the
probability PMC of N PVs to MC-cover n1 links in n2 duty
cycles.

Theorem 1: Given a selected link set E with the number of
links |E| = n1, the probability for N PVs to MC-cover all
the links in E within n2 duty cyclesPMC is

PMC =

n1∏
i=1

[1−
n2∏
j=1

(1− pi(j))
N ] (4)

Proof: As PVs are on the road, there will be no empty
columns in the traffic matrix X . Therefore, we only need to
consider the cases of empty rows.

An empty row in the traffic matrix X implies that there is
no PV reporting the traffic condition at the corresponding link.
If the i-th link is not sampled during the j-th duty cycle, the
probability can be calculated by the case that no PVs traverse
the i-th link during the j-th duty cycle, which is equal to
(1 − pi(j))

N . Hence, the probability that the i-th link is not
sampled for all n2 duty cycles is

∏n2

j=1(1 − pi(j))
N . Since

there are n1 links to be MC-covered, equation (4) is obtained.
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Due to the unevenness of city traffic, pi(j) is quite different
for different links. Moreover, it also varies for different duty
cycles. For example, the probability is obviously higher in the
peak hours than in the mid-night. We need to estimate pi(j)
according to the traffic distribution in order to determine the
required number of PVs for MC-coverage.

For simplicity, pi(j) is estimated by p̂i(j) = cij/Vsum,
where cij is the number of reports of the i-th link during the
j-th duty cycle, and Vsum is the number of PVs in the system.
In the dataset we analyze, the number of different Vehicle IDs
is 32122. As a result, Vsum is set to be 32122.

Notice that there are some links with integrity of 0, and
it is not proper to set p̂ of these links as zero according to
the aforementioned estimation method. This is because if the
probabilities are set as zero, the corresponding rows in the
indicate matrix will definitely be empty no matter how many
PVs are deployed into the system. So we set

p̂i(j) =

{
1

n2Vsum
if ∀j ∈ [1, n2], cij = 0

cij
Vsum

otherwise.
(5)

We then calculate PMC according to equation (4) and (5)
and the result is shown in Fig. 3. It can be seen that more than
320, 000 PVs are required in order to achieve MC-coverage
with high probability of 95%. Considering the privacy issue
pointed out in [30], private cars are not willing to use OBUs to
upload their locations and running states periodically. It means
that we still need about 300, 000 taxis or buses acting as PVs,
which is obviously unable to be fulfilled currently. It can be
observed that simply increasing the number of PVs is not a
pragmatic method for traffic monitoring based on MC method
in VSN. It is thus very necessary to find an efficient way to
improve the evenness of PVs’ samples so that the estimation
error can be reduced from 35% to about 10%.

V. RELATIONSHIP BETWEEN ESTIMATION ERROR AND
ENTROPY OF TRAFFIC SAMPLES

We have observed that simply increasing the number of PVs
on the road cannot tackle the difficulty on improvement of

evenness of PVs’ samples. It can be explained by the fact that
the roads in the city seldom passed by taxis still have small
possibility of being reported even more PVs are deployed.
As a result, we need to increase the reports on these links
by replanning the paths of some controllable FCs. With this
target, we first need to exploit the proper criterion to represent
the evenness of samples. Then, we can further investigate
the relationship between the estimation error of MC based
method and the evenness of samples. Data correlation is used
to explain such phenomenon in our previous work [31], but the
relationship is still unexplored. It is significant for constructing
control laws for FCs.

It is known that the disorder of samples can be expressed by
entropy. The more random the samplings are, the more precise
the estimation of traffic matrix could be. Thus, we use entropy
as the criterion to evaluate the sampling process and explore
the connection between the entropy and the estimation error.
For simplicity, we choose the links with 100% integrity to form
Xfull and then measure the entropy. Each entry in Xfull is
considered as a state, and we can analyze the temporal entropy
and spatial entropy, followed by the relationship between
entropy and estimation error.

A. Temporal Entropy

Suppose there are K different states in Xfull and the
temporal entropy HT (t) at time t is calculated as follows:

HT (t) =
K∑
i=1

PrT (i, t) ln
1

PrT (i, t)
,

where PrT (i, t) is the probability that the state i appears in the
t-th duty cycle and is achieved by taking statistic of Xfull. Let
ki,t denote the number of times that state i appears in the t-th
column of Xfull and n′

1 the number of rows in Xfull, PrT (i, t)
is then estimated by ki,t/n

′
1. Based on the temporal entropy,

we can calculate the mutual information between two traffic
states of the same link in different time, which is defined as

IT (t1, t2) = HT (t1) +HT (t2)−HT (t1, t2) , (6)

where HT (t1, t2) is the joint temporal entropy of the t1-th and
the t2-th duty cycle. Naturally, the closer the two duty cycles
are, the stronger correlation between the data is, and thus the
larger the mutual information is. In order to evaluate Eqn. (6),
we define the k-temporal mutual information (KTMI) as the
averaged temporal mutual information of two duty cycles with
the fixed time interval k as follows:

MT (k) =
1

n2 − k

n2−k∑
i=1

IT (ti, ti+k) .

Based on curve fitting tool in Matlab, we plot the KTMI
of Xfull and find that it is well fitted by an exponential
curve f(k) = α exp(−βk) + γ as shown in Fig. 4, and the
adjusted R-square of the fitting is 0.9864. Hence KTMI can
be estimated by MT (k) = 0.1226 exp(−0.03462k)+1.12782,
and IT (t1, t2) = MT (|t1 − t2|).
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Also, we can calculate the temporal conditional entropy as
follows:

HT (t1|t2) = HT (t1, t2)−HT (t2)

= HT (t1)− IT (t1, t2) .

As we have IT (t1, t2) = MT (|t1 − t2|), the temporal condi-
tional entropy can be calculated by

HT (t1|t2) = HT (t1)−MT (|t1 − t2|) . (7)

Let xΩ = {xij |(i, j) ∈ Ω} as the set of the sampled
data. Then we define the conditional temporal entropy (CTE)
of sampling process HT (xij |xΩ) as the temporal conditional
entropy of xij based on the knowledge of xΩ.

While calculating the CTE of an entry, say xij , links are
assumed to be independent to each other. Also, we only
consider the mutual information of its adjacent sampled data at
the same link. Consequently, the CTE of xij is approximated
by the average of the conditional temporal entropies of xij

with its neighboring sampled data, as shown in Eqn. (8):

ĤT (xij |xΩ) =
HT (xij |xikl

T (i,j)) +HT (xij |xiku
T (i,j))

2
, (8)

where klT (i, j) = max{k|aik = 1 ∧ k ≤ j} and kuT (i, j) =
min{k|aik = 1∧k ≥ j} are the column index of xij’s adjacent
sampled entry. According to Eqn. (7), we have

ĤT (xij |xΩ) =HT (tj)−
1

2
[MT (|kuT (i, j)− j|)

+MT (|j − klT (i, j)|)] .
(9)

B. Spatial Entropy
Similarly, let lj denote the j-th link, then the spatial entropy,

spatial mutual information and spatial conditional entropy are
defined as follows:

HS(l) =
K∑
i=1

PrS(i, l) ln
1

PrS(i, l)
,

IS(l1, l2) = HS(l1) +HS(l2)−HS(l1, l2) ,

HS(l1|l2) = HT (l1)− IS(l1, l2) ,

where PrS(i, l) is the probability that the state i appears in
the l-th road, and is estimated by taking statistic of Xfull.

Unlike temporal entropy, we fail to find a curve that can fit
the spatial mutual information with with the distance between
two links. This can be explained that nearly all the roads are
bi-direction and the condition of one direction, say ⟨v1, v2⟩,
is quite irrelevant to its opposite direction, say ⟨v2, v1⟩. As a
result, the spatial mutual information of the two direction is
small even though the distance between them is nearly zero.
Moreover, the correlation between ⟨v2, v1⟩ and its predecessor,
say ⟨v3, v2⟩ is strong. While the correlation between ⟨v3, v2⟩
and ⟨v1, v2⟩ is not so strong since they only share the same
end node. Notice that the spatial distance between ⟨v2, v1⟩ and
⟨v3, v2⟩ equals to the distance between ⟨v1, v2⟩ and ⟨v3, v2⟩,
the correlations differ greatly. Consequently, we cannot find
an obvious relationship between the spatial mutual information
and the distance of two links. As a result, we need to calculate
IS(l1, l2) for each (l1, l2) pair according to the traffic data
instead of estimate by |l1− l2| as temporal mutual information
does.

Similarly to CTE, the conditional spatial entropy (CSE) of
sampling process HS(xij |xΩ) is defined as spatial conditional
entropy of xij based on the knowledge of xΩ. CSE is estimated
by the following equation

ĤS(xij |xΩ) = HS(li)− IS(lkS(i,j), li) , (10)

where kS(i, j) = argmaxk{IS(lk, li)|akj = 1} is the index
of the link most related to the i-th link and sampled in the j-th
duty cycle.

C. Average Entropy of Samples
In this subsection, we show how to evaluate a sampling

process based on temporal entropy and spatial entropy.
Notice that the uncertainty of the estimation comes from

the empty entries in the matrix, and the entropy of samples
is defined as the entropy of the un-sampled data based on the
knowledge of the sampled data. It is shown as

HΩ(X) =

n1∑
i=1

n2∑
j=1

(1− aij)H(xij |xΩ) ,

where H(xij |xΩ) is the conditional entropy of xij based on the
knowledge of xΩ. Even though H(xij |xΩ) can be calculated
based on H(xij), it is hardly to achieve due to the limited
data. Therefore, we use temporal entropy and spatial entropy
instead, and the entropy of the samples is modified into

HΩ(X) =

n1∑
i=1

n2∑
j=1

(1−aij)[HT (xij |xΩ)+HS(xij |xΩ)]. (11)

Then define the corresponding temporal entropy and spatial
entropy as follows:

HT,Ω(X) =

n1∑
i=1

n2∑
j=1

(1− aij)HT (xij |xΩ) ,
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HS,Ω(X) =

n1∑
i=1

n2∑
j=1

(1− aij)HS(xij |xΩ) .

Thus HΩ(X) = HT,Ω(X) +HS,Ω(X).
Moreover, define the average entropy of samples as

H̄Ω(X) = H̄T,Ω(X) + H̄S,Ω(X), (12)

where

H̄T,Ω(X) ,
n1∑
i=1

∑n2

j=1(1− aij)HT (xij |xΩ)∑n2

j=1 aij
. (13)

In (13), the averaged temporal entropy (ATE) of a link is given
by getting the temporal entropy sum of a link, divided by the
link’s number of the duty cycles that is sampled. H̄T,Ω(X) is
then the sum of all the links’ ATE. Similarly, we have

H̄S,Ω(X) ,
n2∑
j=1

∑n1

i=1(1− aij)HS(xij |xΩ)∑n1

i=1 aij
. (14)

In order to explore the relationship between the entropy
and estimation error of MC based method, we generate a
random sampling matrix Ω for Xfull to get a new traffic
matrix. Then calculate the entropies (11) and (12), respectively.
Then, we reconstruct Xfull via HaTTEM algorithm introduced
in Section III-B. Since HaTTEM is an iterative algorithm, a
constant maximum iteration is set in the test. Fig. 5 shows the
results with the sampling ratio of 35%.

It is obviously seen in Fig. 5 that the reconstruction error
is more related to average entropy than to entropy. More tests
are given with different sampling ratios varying from 15% to
35% with the difference of 2.5%. For a given sampling ratio,
we test 1800 times and give the estimation error in Fig. 6.

Interestingly, it is seen from Fig. 6 that the reconstruction
error has a uniform relationship with the average entropy.
Moreover, the estimation error can still be as low as 10% and
15% even if the sampling ratio is set as low as 15% and 25%,
while the estimation error can be as worse as 35% even if the
sampling rate is 35%. It implies that the sampling ratio does
not affect the estimation error directly. What takes effect on
the error of MC based method is the average entropy of
samples. Hence, the average entropy is chosen in this paper
as the proper criterion for evenness of samples. Furthermore,
it is also used to evaluate the relationship between estimation
error and unevenness of samples.

It is desired to introduce an explicit function to show the
relationship between the estimation error and the average
entropy. It is obvious that if all the entries of a matrix
is sampled, the average entropy is 0, and so as estimation
error. Consequently, the curve of function should pass the
origin (0,0). We model the log-like function in Fig. 6 by the
function f(H̄) = b log(1 + cH̄), where H̄ is the average
entropy, b > 0 and c > 0 are the adjusting parameters to
be determined. Then we again use the curve fitting tool in
commercial software Matlab to identify the parameters. The
fitting result is f(H̄) = 0.1894 log(1+2.392 · 10−4H̄), which
is the red solid line in Fig. 6. It is found that the value of
H̄T,Ω is very close to H̄S,Ω. Then we divide the H̄T,Ω by the
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number of links and get the ATE per link, denoted by H̄l. The
relationship of estimation error of MC based method and the
average entropy of samples is given in the following form

Err(H̄Ω(X)) , ∥MC(PΩ(X))−X∥F

∥X∥F

= f(H̄Ω(X)) = b log(1 + cH̄Ω(X))
(15)

Also, it yields Errl = bl log(1 + clH̄l) as the relationship of
estimation error of MC based method and the ATE per link.

VI. SAMPLING RULE DESIGN FOR FCS

Based on the relationship between estimation error and
samples discussed in Section V, the main idea of this paper
is to control the movement of FCs to minimize the average
entropy of sampled traffic matrix Y .

Besides PVs, suppose that there are nf FCs, which can
be controlled, running in the city to sense the traffic con-
dition of the roads. Let e(tj , i) denote the index of link
where the i-th FC is running at the time tj , and

−→
E i =

{e(t1, i), e(t2, i), · · · , e(tf , i)} denote the path of the i-th FC
during the time from t1 to tj . With the duty cycle of sampling,
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the resulting index set of FC’s samples is denoted as

Ωi = R(
−→
E i) = {R(e(t1, i)), R(e(t2, i)), · · · , R(e(tf , i))},

where R(e(tj , i)) = (e(tj , i), ⌊tj/∆T ⌋) is the combinatory
index of link and duty cycle for the i-th FC at time tj .

Thus, the sampling process of all the FCs can be represented
as Ωf =

∪nf

i=1 Ωi. Let Ωp be the sampling process of all PVs,
and the index of all the sampled data are redefined as Ω =

Ωf ∪ Ωp. Define
−→
E f = {

−→
E 1,

−→
E 2, · · · ,

−→
E nf

} as the route
vector of all FCs. The estimation problem is formulated as

min−→
E f

∥X̂ −X∥F

s.t. X̂ = MC(PΩ(X))

B(
−→
E f , X) = 1

(16)

where B(
−→
E f , X) is a bool function which indicates whether

the paths
−→
E f of all the FCs satisfy the traffic condition X .

Note that it is not only difficult to construct the bool function
B(·, ·), but also impossible to judge whether the paths of FCs
satisfy the traffic condition before we have estimated X . That
is why we try to reduce the average entropy of samples but
not to solve the minimization problem.

According to (15), we have

||MC(PΩ(X))−X||F = ||X||F f(H̄Ω(X)).

Noticing that f(·) is a monotonically increasing function, the
problem (16) can be equivalently formulated into

min−→
E f

H̄Ω(X)

s.t. B(
−→
E f , X) = 1.

(17)

Since ASE H̄S,Ω(X) is difficult to be minimized due to the
unavailability of spatial mutual information, we focus on the
minimization of ATE by the following theorem.

Theorem 2: Extract k samples from n2 duty cycles
1, 2, · · · , n2 of a link for traffic estimation, and form the new

sampled duty cycle list t1, t2 · · · , tk. If HT (i) = HT (j) =
ζ, ∀1 ≤ i, j ≤ n2, the minimum of ATE is achieved for
t1 = tm − tm−1 = n2 − tk, (2 ≤ m ≤ k).

Proof: Notice that k sampled duty cycles partition the
consecutive n2 duty cycles into k + 1 segments. Denote the
length of the m-th segment by ωm,m = 1, 2, · · · , k + 1. It is
easy to get ω1 = t1 − 1, ωm = tm − tm−1 − 1, (1 ≤ m ≤ k),
ωk+1 = n2 − tk − 1 and

∑k+1
m=1 ωm = n2 − k.

The ATE of a link can be computed as

H̄T,Ω(X) =

k+1∑
m=1

W (m)

k
,

where W (m) is the temporal entropy at the m-th segment, and
it is given by

W (m) =

ωm∑
j=1

{ζ − 1

2
[MT (j) +MT (ωm − j + 1)]}

= ωmζ −
ωm∑
j=1

MT (j)

= ωm(ζ − γ)− α
exp(−β)[1− exp(−βωm)]

1− exp(−β)
.

Hence we have

H̄T,Ω(X) =
1

k

[
(ζ − γ)

k+1∑
m=1

ωm −
α
∑k+1

m=1(1− e−βωm)

eβ − 1

]

=
1

k

[
(ζ − γ)(n2 − k)− α(k + 1)

eβ − 1

]
+

α

k(eβ − 1)

k+1∑
m=1

e−βωm .

It follows from the fitting function f(·) in Section V-A that
α > 0. The ATE H̄T,Ω is minimized if

∑k+1
m=1 e

−βωm is
minimized.

Based on Jensen’s inequality, it yields

k+1∑
m=1

e−βωm ≥ (k + 1) exp{−
β
∑k+1

m=1 ωm

k + 1
},

and the equivalence holds for ωm = ωn, ∀m,n = 1, 2, · · · , k+
1,m ̸= n. Thus, ATE of a link is minimized if t1 = tm −
tm−1 = n2 − tk, (2 ≤ m ≤ k).

It is noted that the minimization of ATE reduces the average
entropy and thus also the estimation error. According to Theo-
rem 2, the sampling rule can be given as follows: Sampling the
links with equal intervals reduces the estimation error based
on MC method. This motivates us to propose patrol algorithm
to control the movement of FCs.

Patrol is the action of traveling around an area to supervise
it at regular intervals. Different from [32] where vertices are
required to be traveled regularly, the links are desired to be
traveled regularly in this paper.
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A. Circuit Patrol
In circuit patrol, we need to find a circuit path for FCs

(e.g. surveillance cars are desired in the way of circuit patrol).
The required circuit path needs to be a Eulerian circuit that
start from a vertex, traverse all the links in the graph once
and return to the start point. Initially, FCs are deployed in the
circuit, yielding an equal traveling time between every two
consecutive FCs. All the FCs in the same cyclic path follow
the same route.

Due to the uncontrollable moving of PVs, we divide the
links into two categories: hot links, which integrity is larger
than a threshold ρl, and the cold links, which integrity is below
ρl. The hot links are sampled by the PVs while the cold links
are patrolled by FCs. Construct a new directed graph G′ whose
edges are the cold links, and hence the FCs need to travel the
circuit path in G′.

Does Eulerian circuit exist in G′, and what should we do if
the Eulerian circuit does not exist? The following lemma gives
the answer.

Lemma 1: Given the strongly connected directed graph
G′ = {V ′, E′}, if ⟨vi, vj⟩ ∈ E′ and ⟨vj , vi⟩ ∈ E′ hold
equivalently, then G′ has the Eulerian circuit.

Proof: Lemma 1 is easy to be proved. If ⟨vi, vj⟩ ∈ E′ and
⟨vj , vi⟩ ∈ E′ hold equivalently, the in-degree of every vertex
equals to its out-degree. Hence, G′ has Eulerian circuit if G′

is strongly connected according to the property of Eulerian
circuit.

According to Lemma 1, the circuit patrol (C-Patrol) method
is given as follow: We first add the links whose direction are
opposite to the cold links into the graph G′, so that the in-
degree of every vertex in G′ equals to its out-degree. Then, if
any two parts of G′ are not connected, they are separated into
two subgraphs. For each subgraph, we find an Eulerian circuit
and then assign FCs in each circuit based on the average
traverse time of the circuit. The FCs move according to the
Eulerian circuit.

Next, we compute the number of FCs to be assigned to a
given Eulerian circuit such that the pre-described estimation
error request, Err, is satisfied. According to the relationship
between estimation error and ATE per link mentioned in
Section V-C, the ATE per link, hl, should satisfy

hl ≤
exp(Err/bl)− 1

cl
, H̄l . (18)

Based on Theorem 2, the sampling interval of a link should
be same for minimized ATE. The minimized ATE of a link
under the interval w can be given according to Eqn. (13) as
follows.

hl =
1

n2

w+1 − 1

[
n2wζ

w + 1
− n2

w + 1

w∑
k=1

(α exp(−βk) + γ)

]

=
n2

n2 − w − 1

[
w(ζ − γ)− α(1− e−βw)

eβ − 1

]
.

(19)

From Eqns. (18) and (19), we have

D1e
−βw +D2w ≤ D3,

where D1 = αn2, D2 = (eβ − 1)(H̄l + n2(ζ − γ)) and D3 =
H̄l(e

β −1)(n2−1)+αn2. By solving the inequality, we have

w ≤ wmax ,
D2W0(−D1β

D2
e−

D3β
D2 ) +D3β

D2β
, (20)

where W0(·) is the Lambert W-function.
Moreover, the required Err can be satisfied if the number

of FCs for the Eulerian circuit is larger than the threshold
L/(v̄∆T ·wmax), where L is the length of the Eulerian circuit,
and v̄ is the average moving speed in the circuit.

It is worth to note that the routes of the FCs in circuit patrol
are pre-planned, and the cars are not reactive to the real-time
traffic condition. Thus, we try to improve the patrol control by
greedy strategy so that the FCs can choose the links to traverse
according to the real-time traffic condition.

B. Greedy Patrol

The main idea of the greedy patrol is that every FC chooses
the next link to traverse greedily according to the current and
predicted idleness of the links in its area of interest.

The current idleness of the i-th link, denoted by τc,i(t), is
easy to get by counting the number of un-sampled duty cycles.
Hence τc,i(t) = ⌊t/∆T ⌋ − klT (i, ⌊t/∆T ⌋). To predict the
future idleness, we assume that the movements of PVs follow
the same random process. Let p(i, j, t) be the probability of
a PV starting from the link i and firstly arriving at the link j
on t, which can be obtained by statistic from the trails of the
PVs. Then the expectation of the future idleness of the i-th
link is

τf,i =
+∞∑
k=1

(k − 1)P (i, k∆T ),

where P (i, k∆T ) = 1 −
∏
j

(1 − p(j, y, k∆T ))mj , and mj is

the number of taxis currently in the j-th link.
To reduce the computational complexity, τf,i is approximat-

ed by
∑kmax

k=1 (k− 1)P (i, k∆T ). Then the idleness of the link
i can be calculated by τi = τc,i(t) + τf,i. Then the idleness
map is τ = {τ1, τ2 · · · , τn1}

The process of the greedy patrol (G-Patrol) is given as
follows: at the end of a duty cycle, TMC calculates the current
idleness τc of the links according to the reports from the PVs
and FCs. Also, TMC estimates the predicted idleness of the
links. Then it calculates the idleness map τ , and then report
the result to FCs. Each FC greedily moves to the link with the
highest idleness. To avoid choosing the common cold links,
each FC decides the patrol path with its neighborhood FCs
under the coordination of TMC.

VII. EVALUATION

In this section, we present the simulation results to evaluate
the performance of the circuit patrol and the greedy patrol
based on the real world traffic data from STIC, Shanghai,
China.
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A. Circuit Patrol

According to the circuit patrol, the FCs move in the Eulerian
circuit predetermined according to the statistic of the links. We
calculate the number of required FCs according to Eqn. (20), so
that TMC can use MC based estimation to recover the traffic
matrix within a pre-described tolerant error. The simulation
result is shown in Fig. 7 (a).

For the integrity threshold ρl chosen as 5%, about 540
FCs are required for the whole city of Shanghai so that the
estimation error is smaller than 15%. While only 230 FCs are
required if the tolerant error is set as 30%. This is because
when the tolerant error decreases, the sampling interval of a
link decreases, and more FCs are required to guarantee the
interval. For the ρl to be increased to 20%, more links are
labeled as cold links, and thus the length of the Eulerian
circuit increases. As a result, the numbers of required FCs
increase to 730 and 310 for the tolerant error of 15% and
30%, respectively.

B. Greedy Patrol

In the greedy patrol, the movement of the FCs is reactive to
the samples of PVs. They are expected to move to the links
that PVs seldom pass. For simplicity, we choose the roads in
a region whose integrity is 100% as the roads to be sampled,
and show the performance of greedy patrol by recovering the
traffic matrix via MC technique. The sampling matrix of PVs
follows the uneven pattern shown in the Fig. 2. N ′

f FCs are
deployed in the region to sense the traffic condition based on
greedy patrol. Then the number of FCs to monitor the whole
city is Nf = N ′

fn1/nfull, where n1 and nfull are the numbers
of links in the city and the selected region, respectively. The
estimation error and standard deviation is shown in Fig. 7 (b).

Comparing the performance of greedy patrol with respect
to different kmax, it shows that kmax does not have much
impact for kmax > 6. It means we only need to estimate the
idlenss of the links 30 minutes in the future. The simulation
result also implies that we can achieve a good estimation with
15% error by controlling about 260 FCs. The performance
of greedy patrol is better than circuit patrol because the
corresponding routes are reactive to the PVs’ samples even
though they cannot guarantee the same intervals between any
two consecutive sampled duty cycles. In order to estimate
the required FCs in the circuit patrol, we assume the ATEs
of the hot links are h̄l although they are normally smaller
than h̄l. Hence, the required estimation error can be satisfied
even though the number of FCs is actually smaller than the
theoretical number.

In order to show the scalability of the proposed greedy patrol
for different road topologies, we change the bidirectional roads
of Shanghai to one-way roads. The estimation result has been
shown in Fig. 7(b). It is observed that the estimation error
becomes larger. This can be explained that for one-way roads,
the FCs need to go across more roads to travel from one cold
link to another, which reduces the sampling rate of the idle
links. It is also shown that the greedy patrol algorithm benefits
from the bidirectional roads topology.
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Fig. 7. (a) The number of required FCs of circuit patrol; (b) The estimation
error VS the number of FCs of greedy patrol

Furthermore, we use spline interpolation method to estimate
the traffic matrix for comparison study. The resulting error
shown in Fig. 7(b) is 5% more than that by MC-based algorith-
m. Moreover, the deviation by MC-based algorithm is smaller
than that of interpolation. Compared with the interpolation
method, fewer FCs are required for MC algorithm to achieve
the same estimation error, which demonstrates the advantage
of MC based algorithm.

The performance comparison of greedy patrol and randomly
patrol (R-Patrol) is shown in Fig. 7(b). It can be seen that
for both MC algorithm and interpolation, there is no obvious
improvement even for more FCs if they just patrol randomly. It
proves that the improvement of estimation error from 35% to
12% is due to the increase of evenness rather than the number
of FCs. On the other hand, the average entropy with greedy
patrol control decreases from about 4.9×104 to 4.8×103 as the
number of FCs increases from 0 to 650. However, the average
entropy by random patrol remains nearly the same even though
the number of floating cars increases. It has then demonstrated
that the traffic estimation benefits from the reduction of entropy
for better sampling process of patrolling control of FCs.

C. Further Discussion
For circuit patrol, FCs need to sample the traffic conditions

of cold links with equal intervals. However, a cold link does
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not imply light traffic there. It means that the link is seldom
passed or traveled by PVs, and its traffic condition is unknown.
Consequently, the speed of traveling across cold links may be
different. It thus may be difficult to guarantee that these links
are sampled by the FCs with the exactly same intervals because
of the unknown and varying traffic. We discuss the impact of
traffic variation on estimation error by using circuit patrol as
follows.

For the case that the cold links are with light traffic, FCs
can try to keep almost equal travel time from one cold link to
the next by regulating their speed. In fact, the time granularity
of estimation, ∆T , is set to be 5 minutes in our study. All
the sensing reports uploaded in one duty cycle are considered
as sampled at the same time. Suppose that the expected time
difference between two consecutive FCs to sample the same
cold link is ∆ts. It is acceptable as long as the real time
difference, ∆tr, satisfies |∆tr−∆ts| ≤ 0.5∆T . Consequently,
the circuit patrol is robust against the small variation of traffic
condition due to the reasons such as the regulation of traffic
light.

For the case that the cold links are with heavy traffic, we test
the effectiveness of circuit patrol by various traffic conditions.
We randomly select 10% to 50% of the cold links, and reduce
their average traversal speed during daytime by 20%. The
result is shown in Fig. 8. The threshold of cold links in the
circuit patrol, ρl, is 5% for Fig. 8(a) and 20% for Fig. 8(b).
With ρl = 5%, the estimation error slightly increases from
10.74% to 11.99% when the percentage of congested roads
increases from 0 to about 50% with 700 FCs. For ρl = 20%,
the estimation error increases from 10.69% to 12.15% when
950 FCs are deployed. It has been shown that the estimation
performance does not degrade much. Consequently, the circuit
patrol is robust against traffic variation in cold links. If severe
traffic congestion happens in cold links, FCs could change
their predetermined routes by reporting the realtime traffic
condition to TMC and receiving the guidance from TMC. At
this circumstance, the cold links have turned into hot ones. It
is noted that ∆ts could also adaptive according to the realtime
traffic and the updated circuit routes.

As for greedy patrol, the time intervals of sampling cold
links are either not exactly the same due to traffic variation.
However, we can achieve good estimation result since the
differences of time intervals are only one or two duty cycles
from simulation. It is seen that the greedy patrol is adaptive
to traffic variation in nature.

It implies from the discussion that the traffic estimation
performance would not be deteriorated greatly if the variation
of sampling time of cold links are not too large by the proposed
patrol strategies.

VIII. CONCLUSION

In this paper, we have proposed patrol control algorithms
to improve the performance of matrix completion based urban
traffic monitoring. From the analysis of real world traffic data
from Shanghai, it has been shown that the performance of
matrix completion depends on the sampling process, and the
uneven distribution of probe vehicles leads to the uneven sam-
pling of traffic matrix. Therefore, we explore the relationship
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Fig. 8. The number of required FCs of circuit patrol with congested roads
sometimes with (a) ρl = 5%, (b) ρl = 20%

between the estimation performance and the sampling process
from the perspective of entropy. To reduce the average entropy
of samples, two path planning algorithms, namely circuit patrol
and greedy patrol, have been proposed to control the movement
of the floating cars, which proactively participate in traffic
sensing. The circuit patrol algorithm pre-plans circuit paths
for floating cars that contain all the cold links (with low
traffic), while greedy patrol algorithm enables the floating cars
reactively to travel according to the distribution of the obtained
samples. Simulation results have shown that our algorithms
outperform the random patrol in terms of estimation error. By
replanning the paths of about 400 floating cars for the whole
city of Shanghai, the estimation error of greedy patrol reduces
from 35% to 12%.

For our future research, the distribution of PVs is to be
explored in depth from the perspective of social pattern based
on real traces of probe vehicles (buses and taxis in this paper).
Geographically, the mobility routs of buses are constant, thus
the average speed of the buses’ can be used to estimate
the spacial distribution of traffic in the regions along the
buses’ routes. While the taxis have restricted mobility regions
around some specific social spots (e.g., business centers and
financial centers), so the spacial distribution of traffic in the
regions sampled by taxis may follow a specific power-law
from the hot spots towards the boarder of the mobility regions.
Taking this social pattern into account, the traffic estimation
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method proposed in this paper can be improved by more
accurate spacial entropy of traffic samples. Another possible
direction is to study the traffic monitoring based on multiple
sources of traffic samples, e.g. VSN, static traffic cameras
and smart phones. Then new relationship between estimation
error and sampling process may be explored and then used to
provide guidance on camera deployment. Besides, studying the
performance of patrol algorithm with different road topology
might be useful in improving the strategies. It is also very
interesting to incentive private vehicles to participate the traffic
sensing by smart phones, so that the traffic condition of the
whole city can be estimated by this efficient and economical
way.
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