

THOMPSON RIVERS UNIVERSITY

Department of Biological Sciences

BIOL 3030 - 3 POPULATION BIOLOGY (3,1,0) Winter 2014

Instructor: Dr Nancy Flood	Instructor: Dr Louis Gosselin
Office: S130	Office: Research Centre RC203
Email: nflood@tru.ca	Email: lgosselin@tru.ca
Phone: 828-5436	Phone: 828-5423
Office hours: as posted on Moodle	Office hours: Tues: 2:30-3:20
	Thur: 9:00-9:50
	Fri: 11:30-12:20

Meeting times

Lectures:	Mon:	2:30 - 3:20 AM	Room IB 1020
	Wed & Fri:	1:30 - 2:20 PM	Room OM 2621
Seminars:	1 h/wk, as sch	neduled Room S232	2 (computer lab)

Calendar description

Introduction to the study of plant and animal populations and their physical and biological environments. Topics include natural selection and microevolution, demography, population dynamics, competition and predation.

Course description

This course examines the distribution and growth of plant and animal populations in natural habitats. Specifically, students learn which factors influence population distribution and growth and how populations are affected by these factors. The course also explores mathematical models that integrate these factors to estimate future population size, and their relevance to the real world are explored through numerous empirical examples. The process of gradual change in the genetic make-up of populations - population genetics - is also examined. The course emphasizes the importance of population models and population genetics to fisheries and wildlife management, conservation biology, evolution, and human demography. During weekly seminar activities, students use computers to model the processes regulating population abundance and population genetics.

Prerequisites

BIOL 2170 or NRSC 2100

Recommended texts

Smith TM, Smith RL, Waters I (2014) Elements of Ecology, Canadian Edition. Pearson. Gotelli NJ (2008) A Primer of Ecology. 4^{th} edition. Sinauer \rightarrow Note: copies of these books have been placed on reserve at the library.

Student evaluation

Midterm exam:	30 %	Seminar assignments: 30 %
Final exam:	40 %	

Academic integrity

Course schedule - tentative

All students are expected to abide by TRU's policy regarding cheating, academic misconduct, fabrication and plagiarism, as described in the TRU Academic Integrity Policy (available at: <u>www.tru.ca/_shared/assets/ed05-05657.pdf</u>).

Week	Lecture topic	Seminar activity	
Jan 6 - 10	An Introduction to Ecology: Individuals, Populations and the determinants of spatial dispersion	Introduction to SigmaPlot	
Jan 13 - 17	Population Genetics I: Causes of evolutionary change—Upsetting Hardy Weinberg Equilibrium	Analysing patterns of dispersion	
Jan 20 - 24	Pop ⁿ Gen. II: Natural Selection	Population Genetic models: Natural Selection	
Jan 27 - 31	Pop ⁿ Gen. III: Issues for small populations Genetic Drift	Natural selection continued	
Feb 3 - 7	Pop ⁿ Gen.V: Gene Flow	Modelling the genetic structure of populations: Gene glow and genetic drift	
Feb 10 - 14	Pop ⁿ Gen.VI: Mutation and Non-random mating	Modelling Genetic structure continued	
Feb 17 - 21	Reading	g week	
Feb 17 - 21 Feb 24 - 28	Reading Population growth Population regulation Mid-term exam: Wed Feb 26	g week No Seminar this week	
	Population growth Population regulation		
Feb 24 - 28	Population growth Population regulation Mid-term exam: <i>Wed Feb 26</i>	No Seminar this week	
Feb 24 - 28 Mar 3 - 7	Population growth Population regulation Mid-term exam: <i>Wed Feb 26</i> Population regulation	<i>No Seminar this week</i> Basic population growth models	
Feb 24 - 28 Mar 3 - 7 Mar 10 - 14	Population growth Population regulationMid-term exam: Wed Feb 26Population regulationInterspecific competitionInterspecific competition	No Seminar this week Basic population growth models Logistic model	
Feb 24 - 28 Mar 3 - 7 Mar 10 - 14 Mar 17 - 21	Population growth Population regulationMid-term exam: Wed Feb 26Population regulationInterspecific competitionInterspecific competition Predation	No Seminar this week Basic population growth models Logistic model Interspecific competition	
Feb 24 - 28 Mar 3 - 7 Mar 10 - 14 Mar 17 - 21 Mar 24 - 28	Population growth Population regulationMid-term exam: Wed Feb 26Population regulationInterspecific competitionInterspecific competition PredationPredation	No Seminar this week Basic population growth models Logistic model Interspecific competition Predator-prey relationships	